Abstract

In this paper, the output properties of fiber lasers operating near 980 nm are investigated. It is found that the pump threshold increases exponentially with the length and dopant concentration of the active fiber. It is also revealed that the output properties of the 980 nm fiber lasers are more sensitive to the inner cladding diameter of the active fiber than to the core diameter. In addition, it is interesting to find that the side lobe suppression ratio of fiber Bragg gratings has a negligible effect on the output properties only when it is larger than some critical value.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
    [CrossRef]
  2. R. A. Motes and R. W. Berdine, “Rare-earth ion-doped fiber lasers and amplifiers,” in Introduction to High-Power Fiber Lasers (Energy Professional Society, 2009), pp. 97–100.
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  4. L. Dong and M. E. Fermann, “Rare-earth-doped optical fibers,” in High-Power Laser Handbook, H. Injeyan and G. D. Goodno, eds. (McGraw-Hill, 2011), pp. 416–445.
  5. P. Jelger, M. Engholm, L. Norin, and F. Laurell, “Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber,” J. Opt. Soc. Am. B 27, 338–342 (2010).
    [CrossRef]
  6. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355–357 (1998).
    [CrossRef]
  7. C. Bartolacci, M. Laroche, and H. Gilles, “All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB9.
  8. A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.
  9. D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.
  10. F. Roser, C. Jauregui, J. Limpert, and A. Tunnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16, 17310–17318 (2008).
    [CrossRef]
  11. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.
  12. A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
    [CrossRef]
  13. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16, 1865–1873 (1998).
    [CrossRef]
  14. R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [CrossRef]

2011 (1)

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[CrossRef]

2010 (2)

2008 (1)

1998 (2)

1997 (2)

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

Alegria, C.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Bartolacci, C.

C. Bartolacci, M. Laroche, and H. Gilles, “All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB9.

Berdine, R. W.

R. A. Motes and R. W. Berdine, “Rare-earth ion-doped fiber lasers and amplifiers,” in Introduction to High-Power Fiber Lasers (Energy Professional Society, 2009), pp. 97–100.

Boullet, J.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.

Cazaux, M.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.

Clarkson, W. A.

Codemard, C.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Cormier, E.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.

Desmarchelier, R.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.

Dianov, E. M.

A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.

Dong, L.

L. Dong and M. E. Fermann, “Rare-earth-doped optical fibers,” in High-Power Laser Handbook, H. Injeyan and G. D. Goodno, eds. (McGraw-Hill, 2011), pp. 416–445.

Engholm, M.

Fermann, M. E.

L. Dong and M. E. Fermann, “Rare-earth-doped optical fibers,” in High-Power Laser Handbook, H. Injeyan and G. D. Goodno, eds. (McGraw-Hill, 2011), pp. 416–445.

Gilles, H.

C. Bartolacci, M. Laroche, and H. Gilles, “All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB9.

Hanna, D.

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Hanna, D. C.

Hardy, A.

A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16, 1865–1873 (1998).
[CrossRef]

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

Jauregui, C.

Jelger, P.

Jeong, Y.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Kurkov, A. S.

A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.

Laroche, M.

C. Bartolacci, M. Laroche, and H. Gilles, “All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB9.

Laurell, F.

Limpert, J.

Medvedkov, O. I.

A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.

Minelly, J. D.

Motes, R. A.

R. A. Motes and R. W. Berdine, “Rare-earth ion-doped fiber lasers and amplifiers,” in Introduction to High-Power Fiber Lasers (Energy Professional Society, 2009), pp. 97–100.

Nilsson, J.

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[CrossRef]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355–357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Norin, L.

Oron, R.

A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16, 1865–1873 (1998).
[CrossRef]

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

Paramonov, V. M.

A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.

Paschotta, R.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23, 355–357 (1998).
[CrossRef]

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Payne, D. N.

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[CrossRef]

Philippov, V.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Richardson, D. J.

Roser, F.

Sahu, J. K.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Salin, F.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.

Soh, D. B. S.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

Solodovnikov, V.

A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.

Tropper, A.

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Tropper, A. C.

Tunnermann, A.

Vasiliev, S. A.

A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.

Zaouter, Y.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.

IEEE J. Quantum Electron. (2)

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. Tropper, and D. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (1)

Science (1)

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[CrossRef]

Other (6)

R. A. Motes and R. W. Berdine, “Rare-earth ion-doped fiber lasers and amplifiers,” in Introduction to High-Power Fiber Lasers (Energy Professional Society, 2009), pp. 97–100.

L. Dong and M. E. Fermann, “Rare-earth-doped optical fibers,” in High-Power Laser Handbook, H. Injeyan and G. D. Goodno, eds. (McGraw-Hill, 2011), pp. 416–445.

C. Bartolacci, M. Laroche, and H. Gilles, “All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB9.

A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, S. A. Vasiliev, E. M. Dianov, and V. Solodovnikov, “High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 μm,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), paper OWC2.

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, “A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, and E. Cormier, “Single mode fiber laser emitting 94 W at 977 nm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1.
Fig. 1.

Scheme of 980 nm fiber laser.

Fig. 2.
Fig. 2.

Output powers versus pump power in both experiments and simulations. The active fiber lengths are 0.6 and 0.7 m.

Fig. 3.
Fig. 3.

Output characteristics of the 980 nm fiber laser as a function of the pump power. The pump threshold is around 7.25 W.

Fig. 4.
Fig. 4.

Evolution of the output spectrum with the variation of the pump power in dB set.

Fig. 5.
Fig. 5.

Output characteristics of the 980 nm fiber laser as a function of active fiber length. Note that there is a peak point in the line, which means the corresponding fiber length is the optimum length in the pumping level.

Fig. 6.
Fig. 6.

Evolution of the output spectrum with the variation of the fiber length L in dB set.

Fig. 7.
Fig. 7.

Output characteristics of the 980 nm fiber laser as a function of the dopant concentration N. Note that at the optimum dopant concentration Ps reaches its maximum value.

Fig. 8.
Fig. 8.

Evolution of the output spectrum with the variation of the dopant concentration N in dB set.

Fig. 9.
Fig. 9.

Pump threshold varies exponentially with the fiber length L under various dopant concentration levels. The dots are numerical solutions, while the curves are the exponentially approximation.

Fig. 10.
Fig. 10.

Pump threshold varies exponentially with the dopant concentration N under various fiber length levels. The dots are numerical solutions, while the curves are the exponentially approximation.

Fig. 11.
Fig. 11.

Output characteristics of the 980 nm fiber laser as a function of the core/cladding ratio. Note that Ps ascends with the increase of the core diameter and the cladding diameter separately.

Fig. 12.
Fig. 12.

Evolution of the output spectrum with the variation of the core diameter in dB set.

Fig. 13.
Fig. 13.

Evolution of the output spectrum with the variation of the inner cladding diameter in dB set.

Fig. 14.
Fig. 14.

Pump threshold varies with the core/cladding ratio.

Fig. 15.
Fig. 15.

Output characteristics of the 980 nm fiber laser as a function of R2. Note that Ps decreases with the increase of R2.

Fig. 16.
Fig. 16.

Evolution of output spectrum with the variation of R2 in dB set.

Fig. 17.
Fig. 17.

Output characteristics of the 980 nm fiber laser as a function of SLSR. Note that Ps increases with the increase of SLSR abruptly at one point.

Fig. 18.
Fig. 18.

Evolution of output spectrum with the variation of SLSR in dB set.

Fig. 19.
Fig. 19.

Output characteristics of the 980 nm fiber laser as a function of spectral width Δλ. Note that Ps reaches its minimum at Δλ=1nm.

Fig. 20.
Fig. 20.

Evolution of output spectrum with the variation of Δλ in dB set. The redshift of the oscillating wavelength can be observed.

Fig. 21.
Fig. 21.

Evolution of the pump threshold Ppth with the variation of Δλ.

Tables (2)

Tables Icon

Table 1. Parameters Used in the Simulations and Experiments

Tables Icon

Table 2. Pump Threshold, Maximum Output Power, and SNR under the Maximum Output in Experiments and Simulations when the Active Fiber Lengths are 0.6 and 0.7 m

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G1030=0.25G976+0.72βαp.
N2(z)N=[Pp+(z)+Pp(z)]ΓpσaphνpA+ΓshcAσa(λ)·[P+(z,λ)+P(z,λ)]λdλ[Pp+(z)+Pp(z)](σap+σep)ΓphνpA+1τ+ΓshcA(σa(λ)+σe(λ))·[P+(z,λ)+P(z,λ)]λdλ,
±dP±(z,λ)dz=Γs{[σe(λ)+σa(λ)]N2(z)σa(λ)N}·P±(z,λ)+Γsσe(λ)N2(z)Po(λ)α(z,λ)P±(z,λ),
±dPp±(z)dz=Γp{σap(NN2(z))σep}·Pp±(z)α(z,λp)Pp±(z).
P+(0,λ)=R1(λ)P(0,λ),P(L,λ)=R2(λ)P+(L,λ),
Rj(λ)=Rj×exp{(λλs)2/(Δλj)2},j=1,2.
SNR=10log{max(Ps)/max(PASE)}.
Ppth=exp{k×N×L+α}+P0.

Metrics