Abstract

The dynamics of classical correlation and quantum correlation of two qubits in an independent and common dissipative cavity are studied. We show that for an independent case, the quantum correlation keeps constant and the correlation relation decays before the critical time point Ωt¯. On the other hand t>Ωt¯, for the classical correlation does not change and the quantum correlation is lost. These situations demonstrate that the phenomenon of sudden transition between classical and quantum decoherence appears during the time evolution. For the common case, the quantum correlation dynamics is quite different. It is displayed that for some initial states, the quantum correlation can increase up to the critical point of time, after which it decreases, which means that the quantum correlation presents a sudden change of behavior in their decay rates. But for other initial states, the quantum correlation can keep increasing up to some-steady state value. Furthermore, we also investigate the nonzero quantum correlation between two qubits induced by the dissipation of the cavity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [CrossRef]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  4. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
    [CrossRef]
  5. Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
    [CrossRef]
  6. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
    [CrossRef]
  7. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
    [CrossRef]
  8. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
    [CrossRef]
  9. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
    [CrossRef]
  10. Z. Merali, “The power of discord,” Nature 474, 24–26 (2011).
    [CrossRef]
  11. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
    [CrossRef]
  12. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
    [CrossRef]
  13. F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
    [CrossRef]
  14. R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
    [CrossRef]
  15. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
    [CrossRef]
  16. M. J. Kastoryano, F. Reiter, and A. S. Søensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
    [CrossRef]
  17. V. Frank, M. W. Michael, and C. J. Ignacio, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
    [CrossRef]
  18. Z. Sun, X. M. Lu, and L. J. Song, “Quantum discord induced by a spin chain with quantum phase transition,” J. Phys. B 43, 215504 (2010).
    [CrossRef]
  19. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
    [CrossRef]
  20. Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
    [CrossRef]
  21. R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
    [CrossRef]
  22. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
    [CrossRef]
  23. J. G. Peixoto de Faria and M. C. Nemes, “Dissipative dynamics of the Jaynes–Cummings model in the dispersive approximation: analytical results,” Phys. Rev. A 59, 3918–3925 (1999).
    [CrossRef]
  24. A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004).
    [CrossRef]
  25. M. Dukalski and Y. M. Blanter, “Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity,” Phys. Rev. A 82, 052330 (2010).
    [CrossRef]
  26. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
    [CrossRef]
  27. D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011).
    [CrossRef]
  28. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
    [CrossRef]
  29. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
    [CrossRef]

2011

Z. Merali, “The power of discord,” Nature 474, 24–26 (2011).
[CrossRef]

M. J. Kastoryano, F. Reiter, and A. S. Søensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[CrossRef]

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[CrossRef]

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011).
[CrossRef]

2010

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

M. Dukalski and Y. M. Blanter, “Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity,” Phys. Rev. A 82, 052330 (2010).
[CrossRef]

Z. Sun, X. M. Lu, and L. J. Song, “Quantum discord induced by a spin chain with quantum phase transition,” J. Phys. B 43, 215504 (2010).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
[CrossRef]

R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
[CrossRef]

2009

V. Frank, M. W. Michael, and C. J. Ignacio, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

2008

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
[CrossRef]

2004

A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004).
[CrossRef]

2002

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

2001

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

2000

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

1999

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

J. G. Peixoto de Faria and M. C. Nemes, “Dissipative dynamics of the Jaynes–Cummings model in the dispersive approximation: analytical results,” Phys. Rev. A 59, 3918–3925 (1999).
[CrossRef]

1997

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

1996

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Arruda, L. G. E.

F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
[CrossRef]

Auccaise, R.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Auffeves, A.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

Barbieri, M.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Bertet, P.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

Blanter, Y. M.

M. Dukalski and Y. M. Blanter, “Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity,” Phys. Rev. A 82, 052330 (2010).
[CrossRef]

Boas, C. J. Villas

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Bonagamba, T. J.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Brasil, C. A.

F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Braunstein, S. L.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Brune, M.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

Caldeira, A. O.

F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
[CrossRef]

Caves, C. M.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Céeleri, L. C.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Chen, Z. Q.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Cunha, M. O. Terra

A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004).
[CrossRef]

Datta, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

de Faria, J. G. Peixoto

J. G. Peixoto de Faria and M. C. Nemes, “Dissipative dynamics of the Jaynes–Cummings model in the dispersive approximation: analytical results,” Phys. Rev. A 59, 3918–3925 (1999).
[CrossRef]

de Magalhaes, A. R. B.

A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004).
[CrossRef]

deAzevedo, E. R.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Dreyer, J.

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

Dukalski, M.

M. Dukalski and Y. M. Blanter, “Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity,” Phys. Rev. A 82, 052330 (2010).
[CrossRef]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Fanchini, F. F.

F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Feng, M.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Frank, V.

V. Frank, M. W. Michael, and C. J. Ignacio, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[CrossRef]

Giorda, P.

R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
[CrossRef]

Guo, G. C.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Hagley, E.

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

Haroche, S.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

He, Q. L.

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[CrossRef]

Henderson, L.

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

Ignacio, C. J.

V. Frank, M. W. Michael, and C. J. Ignacio, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[CrossRef]

Jozsa, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Kastoryano, M. J.

M. J. Kastoryano, F. Reiter, and A. S. Søensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[CrossRef]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Li, C. F.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

Lin, H. Q.

D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011).
[CrossRef]

Linden, N.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Lu, X. M.

Z. Sun, X. M. Lu, and L. J. Song, “Quantum discord induced by a spin chain with quantum phase transition,” J. Phys. B 43, 215504 (2010).
[CrossRef]

Luo, D. W.

D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011).
[CrossRef]

Maali, A.

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

Maioli, P.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

Maître, X.

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

Maniscalco, S.

R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Maziero, J.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Mazzola, L.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

Merali, Z.

Z. Merali, “The power of discord,” Nature 474, 24–26 (2011).
[CrossRef]

Meyer, D. A.

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef]

Michael, M. W.

V. Frank, M. W. Michael, and C. J. Ignacio, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[CrossRef]

Mokarzel, S. G.

A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004).
[CrossRef]

Nemes, M. C.

A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004).
[CrossRef]

J. G. Peixoto de Faria and M. C. Nemes, “Dissipative dynamics of the Jaynes–Cummings model in the dispersive approximation: analytical results,” Phys. Rev. A 59, 3918–3925 (1999).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Olivares, S.

R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
[CrossRef]

Oliveira, I. S.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

Osnaghi, S.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Paris, M. G. A.

R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Piilo, J.

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

Popescu, P.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Raimond, J. M.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

Reiter, F.

M. J. Kastoryano, F. Reiter, and A. S. Søensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[CrossRef]

Sarthour, R. S.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Schack, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Serra, R. M.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Shaji, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

Soares-Pinto, D. O.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Søensen, A. S.

M. J. Kastoryano, F. Reiter, and A. S. Søensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[CrossRef]

Song, L. J.

Z. Sun, X. M. Lu, and L. J. Song, “Quantum discord induced by a spin chain with quantum phase transition,” J. Phys. B 43, 215504 (2010).
[CrossRef]

Souza, A. M.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

Souza, S.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Sun, Z.

Z. Sun, X. M. Lu, and L. J. Song, “Quantum discord induced by a spin chain with quantum phase transition,” J. Phys. B 43, 215504 (2010).
[CrossRef]

Vasile, R.

R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
[CrossRef]

Vedral, V.

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

Wang, B.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Werlang, T.

F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wunderlich, C.

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

Xu, J. B.

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[CrossRef]

D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011).
[CrossRef]

Xu, J. S.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

Xu, X. Y.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

Xu, Z. Y.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Yao, D. X.

D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011).
[CrossRef]

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[CrossRef]

Yeo, Y.

Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
[CrossRef]

Zeilinger, A.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Zhang, C. J.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

Zhang, Y. Q.

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[CrossRef]

Zheng, S. B.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Zou, X. B.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

J. Phys. A

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

J. Phys. B

Z. Sun, X. M. Lu, and L. J. Song, “Quantum discord induced by a spin chain with quantum phase transition,” J. Phys. B 43, 215504 (2010).
[CrossRef]

Nat. Commun.

J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010).
[CrossRef]

Nat. Phys.

V. Frank, M. W. Michael, and C. J. Ignacio, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[CrossRef]

Nature

Z. Merali, “The power of discord,” Nature 474, 24–26 (2011).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Phys. A

A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004).
[CrossRef]

Phys. Rev. A

M. Dukalski and Y. M. Blanter, “Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity,” Phys. Rev. A 82, 052330 (2010).
[CrossRef]

J. G. Peixoto de Faria and M. C. Nemes, “Dissipative dynamics of the Jaynes–Cummings model in the dispersive approximation: analytical results,” Phys. Rev. A 59, 3918–3925 (1999).
[CrossRef]

D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011).
[CrossRef]

Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010).
[CrossRef]

R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010).
[CrossRef]

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[CrossRef]

Phys. Rev. Lett.

R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011).
[CrossRef]

L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

M. J. Kastoryano, F. Reiter, and A. S. Søensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[CrossRef]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000).
[CrossRef]

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996).
[CrossRef]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef]

Other

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic illustration for the system under one qubit coupled with a dissipative cavity. There is no interaction between two qubits A and B.

Fig. 2.
Fig. 2.

Time evolution of quantum mutual information (red-dotted curve), classical correlation (green-dashed curve), and quantum discord (black solid curve) of two qubits as a function of the dimensionless scaled time Ωt with α=0.8, κ/Ω=0.05, and c3=0.6. Vertical dashed line corresponds to the transition time Ωt¯.

Fig. 3.
Fig. 3.

Sudden transition time Ωt¯ is plotted as a function of the initial-state parameter c3 with κ/Ω=0.05. (a) α=3. (b) α=1.8.

Fig. 4.
Fig. 4.

Sudden transition time Ωt¯ is plotted as a function of the initial-state parameter c3 and the ratio κ/Ω with α=1.3.

Fig. 5.
Fig. 5.

Two qubits interacting with a common dissipative cavity.

Fig. 6.
Fig. 6.

Dynamics of quantum mutual information (dotted curve), classical correlation (dashed curve), and quantum discord (solid curve) of two qubits as a function of the dimensionless scaled time Ωt with |α|2=3 and κ/Ω=0.2. (a) c3=0.6. (b) c3=0.3. The vertical dashed curve corresponds to the transition time Ωt¯.

Fig. 7.
Fig. 7.

Quantum discord of two qubits is plotted as a function of the dimensionless scaled time Ωt with κ/Ω=0.2 for |α|2=3 (dotted curve) and |α|2=6 (solid curve). (a) c3=0.6. (b) c3=0.3.

Fig. 8.
Fig. 8.

Dynamics of quantum mutual information (dotted curve), classical correlation (dashed curve), and quantum discord (solid curve) of two qubits as a function of the dimensionless scaled time Ωt with |α|2=3, κ/Ω=0.2 and c3=0.

Fig. 9.
Fig. 9.

Quantum discord of two qubits is plotted as a function of the dimensionless scaled time Ωt with κ/Ω=0.2, c3=0 for |α|2=3 (dotted curve) and |α|2=6 (solid curve).

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

H=ω02(σAz+σBz)+ωaB+aB+g(aB+σB+aBσB+),
dρ(t)dt=i[Heff,ρ(t)]+Dρ(t)=i[Heff,ρ(t)]+κ(2aBρ(t)aB+aB+aBρ(t)ρ(t)aB+aB)
Heff=ω02(σAz+σBz)+ωaB+aB+Ω[(aB+aB+1)|eBe|aB+aB|gBg|],
ρ(0)=14(I+i=13ciσAiσBi)|αα|.
ρ(t)=1+c34|eeee|+1c34|egeg|+1c34|gege|+1+c34|gggg|+(c1c24f(t)γ(t)|eegg|+c1+c24f*(t)γ*(t)|egge|+H.c.)
f(t)=exp{iΩt+|α|2(e2κt1)}·exp{|α|2κκ+iΩ(1e2(κ+iΩ)t)},γ(t)=exp[|α|2e2κt(e2iΩt1)].
I(ρAB)=S(ρA)+S(ρB)S(ρAB),
I(ρAB(t))=2+j=14λjlog2λj,
λ1,2=14[(1+c3)±(|c1c2||f(t)γ(t)|)],λ3,4=14[(1c3)±(c1+c2f(t)γ(t)|)].
C(ρAB)=max{Bk}{S(ρA)S(ρAB|{Bk})},
Bk=|ΘkΘk|,(k=1,2),
|Θ1=cosθ|e+eiϕsinθ|g,|Θ2=eiϕsinθ|ecosθ|g
ρA1(t)=12[(1+c3cos2θ)|ee|+(1c3cos2θ)|gg|]+14sin2θ[μ(t)|eg|+H.c.],ρA2(t)=12[(1c3cos2θ)|ee|+(1+c3cos2θ)|gg|]14sin2θ[μ(t)|eg|+H.c.],
μ(t)=(c1c2)eiϕf(t)γ(t)+(c1+c2)eiϕf*(t)γγ(t).
ε1,2k=12(1±η),
η={c3cos2θ+14|f(t)γ(t)|2[2(c12+c22)+2(c12c22)cos(2ϕ+φ)]sin22θ}1/2
cosφ=f2(t)γ2(t)+f*2(t)γ*2(t)2|f(t)γ(t)|2,cosφ=i[f2(t)γ2(t)f*2(t)γ*2(t)]2|f(t)γ(t)|2.
S(ρA1(t))=S(ρA2(t))=1η2log21η21+η2log21+η2=S˜(η).
C(ρAB(t))=1minθ,ϕS˜(η).
η{c3cos2θ+14|f(t)γ(t)|2[2(c12+c22)+2|c12c22|]sin22θ}1/2{|c3|if|c3|ξ(t)ξ(t)if|c3|<ξ(t),
ξ(t)=12|f(t)γ(t)|2(c12+c22)+2|c12c22|.
C(ρAB(t))=i=121+(1)im(t)2log2[1+(1)im(t)],
Q(ρAB(t))=I(ρAB(t))C(ρAB(t)).
I(ρAB(t))=1+c32log2(1+c3)+1c32log2(1c3)+1|f(t)γ(t)|2log2(1|f(t)γ(t)|)+1+|f(t)γ(t)|2log2(|1+f(t)γ(t)|),C(ρAB(t))=j=121+(1)jm(t)2log2[1+(1)jm(t)],Q(ρAB(t))=I(ρAB(t))C(ρAB(t)),
dρ(t)dt=i[H,ρ(t)]+Dρ(t)=i[H,ρ(t)]+κ(2aρ(t)a+a+aρ(t)ρ(t)a+a)
H=ω02(σAz+σBz)+ωa+a+gi=A,B(aσi++H.c.),
He=Ω[j=A,B(|eje|aa+|gjg|a+a)+(σA+σB+σAσB+)],
dρ(t)dt=i[He,ρ(t)]+κ(2aρ(t)a+a+aρ(t)ρ(t)a+a).
ρ(0)=14{(1+c3)|eeee|+(1c3)|egeg|+(1c3)|gege|+(1+c3)|gggg|+[(c1c2)|eegg|+(c1+c2)|egge|+H.c.]}|αα|,
ρAB(t)=14{(1+c3)|eeee|+(1c3)|egeg|+(1c3)|gege|+(1+c3)|gggg|+[(c1c2)F(t)|eegg|+(c1+c2)|egge|+H.c.]},
F(t)=exp{2iΩt+2iΩ|α|2κ+2iΩ[e2(2iΩ+κ)t1]}.
I(ρAB(t))=2+1+c32log21+c32+(1+c3)(1+F(t))4log2(1+c3)(1+F(t))4+(1+c3)(1F(t))4log2(1+c3)(1F(t))4,C(ρAB(t))=j=121+(1)jn(t)2log2[1+(1)jn(t)],Q(ρAB(t))=I(ρAB(t))C(ρAB(t)).

Metrics