Abstract

A microtrap consisting of two concentric circular wire loops having radii of 300 and 660 μm, respectively, is demonstrated. The three-dimensional trap has a maximum depth of more than 1 mK, and the trap center position as measured below the atom chip surface can be adjusted by applying a small-bias magnetic field. More than 105Rb87 atoms were transferred into the microtrap from a magneto-optical trap and remained trapped for several hundred milliseconds, which is limited by the background pressure. The loading of a linear array of three microtraps is also demonstrated. The trap dimensions are readily scaled to micrometer size, which is of interest for creating a one- and two-dimensional array of neutral atom traps on a single atom chip.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Weinstein and K. G. Libbrecht, “Microscopic magnetic traps for neutral atoms,” Phys. Rev. A 52, 4004–4009 (1995).
    [CrossRef]
  2. R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
    [CrossRef]
  3. J. Fortagh and C. Zimmerman, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
    [CrossRef]
  4. W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
    [CrossRef]
  5. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
    [CrossRef]
  6. M. Horikoshi and K. Nakagawa, “Atom chip based fast production of a Bose Einstein condensate,” Appl. Phys. B 82, 363–366 (2006).
    [CrossRef]
  7. D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
    [CrossRef]
  8. S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
    [CrossRef]
  9. B. Lu and W. A. van Wijngaarden, “Bose Einstein condensation in a QUIC trap,” Can. J. Phys. 82, 81–102 (2004).
    [CrossRef]
  10. Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004).
    [CrossRef]
  11. M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
    [CrossRef]
  12. Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
    [CrossRef]
  13. S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
    [CrossRef]
  14. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
    [CrossRef]
  15. G. Birkl and J. Fortagh, “Microtraps for quantum information processing and precision force sensing,” Lasers Photon. Rev. 1, 12–23 (2007).
    [CrossRef]
  16. T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
    [CrossRef]
  17. P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
    [CrossRef]
  18. J. Reichel, “Microchip traps and Bose Einstein condensation,” Appl. Phys. B 74, 469–487 (2002).
    [CrossRef]
  19. W. A. van Wijngaarden, “A second century of Einstein? Bose Einstein condensation and quantum information,” Can. J. Phys. 83, 671685 (2005).
  20. B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008).
    [CrossRef]
  21. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989).
    [CrossRef]
  22. M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
    [CrossRef]
  23. D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19, 8471–8485 (2011).
    [CrossRef]
  24. C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
    [CrossRef]
  25. H. Ming and W. A. van Wijngaarden, “Transfer of ultracold Rb87 from a QUIC magnetic trap into a far off resonance optical trap,” Can. J. Phys. 85, 247–258 (2007).
    [CrossRef]
  26. I. Teper, Y. J. Lin, and V. Vuletic, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
    [CrossRef]
  27. J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
    [CrossRef]
  28. H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
    [CrossRef]

2011 (2)

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19, 8471–8485 (2011).
[CrossRef]

2010 (3)

H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
[CrossRef]

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

2008 (1)

B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008).
[CrossRef]

2007 (5)

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

H. Ming and W. A. van Wijngaarden, “Transfer of ultracold Rb87 from a QUIC magnetic trap into a far off resonance optical trap,” Can. J. Phys. 85, 247–258 (2007).
[CrossRef]

J. Fortagh and C. Zimmerman, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

G. Birkl and J. Fortagh, “Microtraps for quantum information processing and precision force sensing,” Lasers Photon. Rev. 1, 12–23 (2007).
[CrossRef]

2006 (4)

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

M. Horikoshi and K. Nakagawa, “Atom chip based fast production of a Bose Einstein condensate,” Appl. Phys. B 82, 363–366 (2006).
[CrossRef]

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

I. Teper, Y. J. Lin, and V. Vuletic, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef]

2005 (3)

W. A. van Wijngaarden, “A second century of Einstein? Bose Einstein condensation and quantum information,” Can. J. Phys. 83, 671685 (2005).

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

2004 (2)

B. Lu and W. A. van Wijngaarden, “Bose Einstein condensation in a QUIC trap,” Can. J. Phys. 82, 81–102 (2004).
[CrossRef]

Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004).
[CrossRef]

2002 (2)

R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
[CrossRef]

J. Reichel, “Microchip traps and Bose Einstein condensation,” Appl. Phys. B 74, 469–487 (2002).
[CrossRef]

2001 (3)

W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef]

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[CrossRef]

2000 (1)

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

1995 (1)

J. D. Weinstein and K. G. Libbrecht, “Microscopic magnetic traps for neutral atoms,” Phys. Rev. A 52, 4004–4009 (1995).
[CrossRef]

1989 (1)

Aigner, S.

Anderson, D. Z.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Andersson, M.

Antezza, M.

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

Aubin, S.

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Bender, H.

H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
[CrossRef]

Birkl, G.

G. Birkl and J. Fortagh, “Microtraps for quantum information processing and precision force sensing,” Lasers Photon. Rev. 1, 12–23 (2007).
[CrossRef]

Bloch, I.

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[CrossRef]

Bright, V. M.

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Calcarco, T.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Chin, C.

Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004).
[CrossRef]

Chu, S.

Cirac, J. I.

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Cirone, M. A.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Cornell, E. A.

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Courteille, P. W.

H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
[CrossRef]

Denschlag, J.

R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
[CrossRef]

Diot, Q.

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Esslinger, T.

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[CrossRef]

Extavour, M. H. T.

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Farkas, D. M.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Federsel, P.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Folman, R.

R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
[CrossRef]

Fortagh, J.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

G. Birkl and J. Fortagh, “Microtraps for quantum information processing and precision force sensing,” Lasers Photon. Rev. 1, 12–23 (2007).
[CrossRef]

J. Fortagh and C. Zimmerman, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef]

Gierling, M.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Greiner, M.

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[CrossRef]

Gring, M.

Grossmann, A.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef]

Gunther, A.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Günther, A.

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

Haffner, M.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Hänsch, T. W.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[CrossRef]

W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Hansel, W.

W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Henkel, C.

R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
[CrossRef]

Hinds, E. A.

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Hofferberth, S.

Hommelhoff, P.

W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Horikoshi, M.

M. Horikoshi and K. Nakagawa, “Atom chip based fast production of a Bose Einstein condensate,” Appl. Phys. B 82, 363–366 (2006).
[CrossRef]

Hudek, K. M.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Jaksch, D.

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Judd, T. E.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Kasch, B.

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

Kern, D. P.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Kishimoto, T.

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Kraft, S.

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

Krager, P.

R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
[CrossRef]

Krüger, P.

LeBlanc, L. J.

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Libbrecht, K. G.

J. D. Weinstein and K. G. Libbrecht, “Microscopic magnetic traps for neutral atoms,” Phys. Rev. A 52, 4004–4009 (1995).
[CrossRef]

Lin, Y.

Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004).
[CrossRef]

Lin, Y. J.

I. Teper, Y. J. Lin, and V. Vuletic, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Lu, B.

B. Lu and W. A. van Wijngaarden, “Bose Einstein condensation in a QUIC trap,” Can. J. Phys. 82, 81–102 (2004).
[CrossRef]

Marzok, C.

H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
[CrossRef]

McKay, D.

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Ming, H.

B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008).
[CrossRef]

H. Ming and W. A. van Wijngaarden, “Transfer of ultracold Rb87 from a QUIC magnetic trap into a far off resonance optical trap,” Can. J. Phys. 85, 247–258 (2007).
[CrossRef]

Myrskog, S.

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Nakagawa, K.

M. Horikoshi and K. Nakagawa, “Atom chip based fast production of a Bose Einstein condensate,” Appl. Phys. B 82, 363–366 (2006).
[CrossRef]

Negretti, A.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

Noble, G. A.

B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008).
[CrossRef]

Obrecht, J. M.

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

Ockeloen, C. F.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Ott, H.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef]

Pitaevskii, L. P.

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

Prentiss, M.

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

J. Reichel, “Microchip traps and Bose Einstein condensation,” Appl. Phys. B 74, 469–487 (2002).
[CrossRef]

W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Riis, E.

Salim, E. A.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Saravanan, R. A.

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Schlotterbeck, G.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef]

Schmiedmayer, J.

D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19, 8471–8485 (2011).
[CrossRef]

R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
[CrossRef]

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Schneeweiss, P.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Schneider, S.

Schultz, B. E.

B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008).
[CrossRef]

Schumm, T.

Segal, S. R.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Shevy, Y.

Slama, S.

H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
[CrossRef]

Smith, D. A.

Spreeuw, R. J. C.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Squires, M. B.

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Stringari, S.

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

Stummer, A.

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Tauschinsky, A. F.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Teper, I.

I. Teper, Y. J. Lin, and V. Vuletic, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef]

Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004).
[CrossRef]

Thywissen, J. H.

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Treutlein, P.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

Ungar, P. J.

van Wijngaarden, W. A.

B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008).
[CrossRef]

H. Ming and W. A. van Wijngaarden, “Transfer of ultracold Rb87 from a QUIC magnetic trap into a far off resonance optical trap,” Can. J. Phys. 85, 247–258 (2007).
[CrossRef]

W. A. van Wijngaarden, “A second century of Einstein? Bose Einstein condensation and quantum information,” Can. J. Phys. 83, 671685 (2005).

B. Lu and W. A. van Wijngaarden, “Bose Einstein condensation in a QUIC trap,” Can. J. Phys. 82, 81–102 (2004).
[CrossRef]

Visanescu, G.

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Vuletic, V.

I. Teper, Y. J. Lin, and V. Vuletic, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef]

Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004).
[CrossRef]

Wang, Y.

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Weinstein, J. D.

J. D. Weinstein and K. G. Libbrecht, “Microscopic magnetic traps for neutral atoms,” Phys. Rev. A 52, 4004–4009 (1995).
[CrossRef]

Weiss, D. S.

Whitlock, S.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Wicke, P.

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

Wild, R. J.

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

Wildermuth, S.

Wu, S.

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

Zimmerman, C.

J. Fortagh and C. Zimmerman, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

Zimmermann, C.

H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
[CrossRef]

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef]

Zoller, P.

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
[CrossRef]

Appl. Phys. B (2)

M. Horikoshi and K. Nakagawa, “Atom chip based fast production of a Bose Einstein condensate,” Appl. Phys. B 82, 363–366 (2006).
[CrossRef]

J. Reichel, “Microchip traps and Bose Einstein condensation,” Appl. Phys. B 74, 469–487 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010).
[CrossRef]

Can. J. Phys. (3)

B. Lu and W. A. van Wijngaarden, “Bose Einstein condensation in a QUIC trap,” Can. J. Phys. 82, 81–102 (2004).
[CrossRef]

W. A. van Wijngaarden, “A second century of Einstein? Bose Einstein condensation and quantum information,” Can. J. Phys. 83, 671685 (2005).

H. Ming and W. A. van Wijngaarden, “Transfer of ultracold Rb87 from a QUIC magnetic trap into a far off resonance optical trap,” Can. J. Phys. 85, 247–258 (2007).
[CrossRef]

Eur. Phys. J. D (2)

B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008).
[CrossRef]

S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lasers Photon. Rev. (1)

G. Birkl and J. Fortagh, “Microtraps for quantum information processing and precision force sensing,” Lasers Photon. Rev. 1, 12–23 (2007).
[CrossRef]

Nat. Nanotechnol. (1)

M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011).
[CrossRef]

Nat. Phys. (1)

S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006).
[CrossRef]

Nature (2)

W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (5)

T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

J. D. Weinstein and K. G. Libbrecht, “Microscopic magnetic traps for neutral atoms,” Phys. Rev. A 52, 4004–4009 (1995).
[CrossRef]

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[CrossRef]

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Phys. Rev. Lett. (6)

Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef]

Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004).
[CrossRef]

I. Teper, Y. J. Lin, and V. Vuletic, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef]

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007).
[CrossRef]

H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

J. Fortagh and C. Zimmerman, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Diagram of a linear array of three double-loop microtraps. Each of the three traps shown in (a) consists of two concentric loops of radii r1 and r2=2.195r1. The trap centers are located a distance 5r1 apart. The trap potential along the z direction is shown in (b), where the z axis is defined as perpendicular to the chip and passes through the center of the middle microtrap. The trap potential along the x direction for the middle trap is shown in (c) and in the y direction is given in (d). The dashed curves were computed using a zero bias field, while the solid curve was found using Bzbias=1.43Bo. The results shown in (c) and (d) were computed at the position z=z0 along the z axis.

Fig. 2.
Fig. 2.

Trap-depth dependence on bias field Bzbias. The trap depth is shown for a single microtrap by the solid black curve. The trap depth of the middle microtrap is shown for a linear array of three microtraps (dashed curve) and five microtraps (dotted red curve).

Fig. 3.
Fig. 3.

Apparatus. The laser beams used to generate the MOT 1.7 cm below the atom chip surface are shown along with the probe beam used to image the atoms. See the text for a detailed description.

Fig. 4.
Fig. 4.

Timing sequence of magnetic-field currents used to transfer atoms from the quadrupole trap into the microtraps. See text for a detailed description.

Fig. 5.
Fig. 5.

Absorption image of the center and left microtraps. Very few atoms were loaded into the right microtrap, as is discussed in the text. The profile of the atom cloud along the horizontal dashed line shown in (a) is given in (b). Each point represents an average of five pixels of data. The solid curve fitting each microtrapped atom cloud is a Gaussian function fitted to the data as described in the text.

Fig. 6.
Fig. 6.

Dependence of number of atoms in the middle microtrap on Bzshift.

Fig. 7.
Fig. 7.

Dependence of number of atoms in the middle microtrap on loading time. The solid curve is fit to the data using Eq. (5), as discussed in the text.

Fig. 8.
Fig. 8.

Effect of bias magnetic field on number of atoms in the middle microtrap and the center of its position. The dashed curve is the calculated trap position.

Fig. 9.
Fig. 9.

Microtrap atom populations in left microtrap (open circles), middle microtrap (filled black circles), and right microtrap (filled black squares) as a function of Byshift.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z0=α2/31+α2/3r1.
f(y)=Ae(yy0)22σ2,
dNdt=Ret/ταN,
U(y)=gFmFμBBy.
T=2πgFmFμBBσkB.

Metrics