Abstract

In Part 1 of this paper an extended 1D nonlocal photo-polymerization driven diffusion (NPDD) model was developed, giving the temporal and spatial variations of each chemical component concentration within a phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) material layer. Simulations to study the predicted normalized transmission, the nonlocal effect, and the diffusion of ground and excited states of PQ are presented. In this paper, the validity of the proposed model is examined by applying it to fit experimental data for PQ/PMMA layers containing three different initial PQ concentrations; i.e., 1, 2, and 3 mol. %. The effect of different exposure intensities is also examined. Material parameter values are estimated by numerically fitting experimental normalized transmission curves and refractive index modulation growth curves using the proposed theoretical model.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).
  2. J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  3. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
    [CrossRef]
  4. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
    [CrossRef]
  5. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
    [CrossRef]
  6. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
    [CrossRef]
  7. I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [CrossRef]
  8. A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76, 585–591 (2009).
    [CrossRef]
  9. http://en.wikipedia.org/wiki/Absorbance .
  10. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  11. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
    [CrossRef]
  12. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
    [CrossRef]
  13. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
    [CrossRef]
  14. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
    [CrossRef]
  15. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
    [CrossRef]
  16. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
    [CrossRef]
  17. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
    [CrossRef]
  18. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
    [CrossRef]
  19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
    [CrossRef]
  20. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
    [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics: ElectromagneticTheory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).
  22. A. Veniaminov, E. Bartsch, and A. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744–750 (2005).
    [CrossRef]
  23. E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747 (2011).
    [CrossRef]
  24. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543–8549 (2007).
    [CrossRef]
  25. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
    [CrossRef]
  26. Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
    [CrossRef]
  27. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  28. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666 (2011).
    [CrossRef]
  29. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
    [CrossRef]
  30. J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Study of photosensitizer diffusion in a photopolymer material for holographic applications,” Opt. Eng. 50, 015801 (2011).
    [CrossRef]
  31. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
    [CrossRef]
  32. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
    [CrossRef]
  33. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
    [CrossRef]

2012 (1)

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

2011 (7)

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
[CrossRef]

J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Study of photosensitizer diffusion in a photopolymer material for holographic applications,” Opt. Eng. 50, 015801 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

2010 (3)

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

2009 (5)

2008 (4)

2007 (2)

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543–8549 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

2006 (2)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

2005 (2)

A. Veniaminov, E. Bartsch, and A. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744–750 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef]

2000 (1)

1998 (1)

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Aubrechta, I.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Bartsch, E.

A. Veniaminov, E. Bartsch, and A. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744–750 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: ElectromagneticTheory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).

Butovskaya, G. V.

Close, C. E.

Gallego, S.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Gleeson, M. R.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
[CrossRef]

J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Study of photosensitizer diffusion in a photopolymer material for holographic applications,” Opt. Eng. 50, 015801 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

Guo, J.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Study of photosensitizer diffusion in a photopolymer material for holographic applications,” Opt. Eng. 50, 015801 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

Hoff, D.

Kashin, O.

Kelly, J. V.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Koudela, I.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Kowarschik, R.

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747 (2011).
[CrossRef]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543–8549 (2007).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

Krul, L. P.

Lawrence, J. R.

Li, H.

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

Liu, S.

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Study of photosensitizer diffusion in a photopolymer material for holographic applications,” Opt. Eng. 50, 015801 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

Mahilny, U. V.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Marmysh, D. N.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Matusevich, A.

Matusevich, V.

E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543–8549 (2007).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

Matusevich, Y. I.

Matusevich, Yu. I.

McLeod, R. R.

Milera, M.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Mogil’nyi, V. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76, 585–591 (2009).
[CrossRef]

Mooney, D. A.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Murashko, E. A.

Neipp, C.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

O’Neill, F. T.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef]

Popov, A.

A. Veniaminov, E. Bartsch, and A. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744–750 (2005).
[CrossRef]

Qi, Y.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

Sabol, D.

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

Sheridan, J. T.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
[CrossRef]

J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Study of photosensitizer diffusion in a photopolymer material for holographic applications,” Opt. Eng. 50, 015801 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

Stankevich, A. I.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76, 585–591 (2009).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Tolstik, E.

Trofimova, A. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76, 585–591 (2009).
[CrossRef]

Veniaminov, A.

A. Veniaminov, E. Bartsch, and A. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744–750 (2005).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: ElectromagneticTheory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Appl. Phys. B (2)

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

J. Appl. Phys. (4)

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

J. Appl. Spectrosc. (1)

A. V. Trofimova, A. I. Stankevich, and V. V. Mogil’nyi, “Phenanthrenequinone-polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectrosc. 76, 585–591 (2009).
[CrossRef]

J. Mod. Opt. (2)

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

J. Opt. (2)

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

J. Opt. A (1)

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (8)

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28, 842–850 (2011).
[CrossRef]

Macromolecules (1)

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

Opt. Eng. (1)

J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Study of photosensitizer diffusion in a photopolymer material for holographic applications,” Opt. Eng. 50, 015801 (2011).
[CrossRef]

Opt. Express (4)

Opt. Spectrosc. (1)

A. Veniaminov, E. Bartsch, and A. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744–750 (2005).
[CrossRef]

Phys. Res. Int. (1)

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics: ElectromagneticTheory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ-PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. A30, 3298–3307 (2013).

http://en.wikipedia.org/wiki/Absorbance .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Process by which the PQ molecule (1), through the photoreaction, attaches to the PMMA macromolecule (2) [8].

Fig. 2.
Fig. 2.

Spectrum of PQ/PMMA material for three different photosensitizer concentrations: (a) 1 mol. % with layer thickness of 130μm (red square); (b) 2 mol. % with layer thickness of 120μm (green circle); and (c) 3 mol. % with layer thickness of 100μm (blue triangle).

Fig. 3.
Fig. 3.

Normalized transmission characteristics for samples with three different PQ concentrations: (a) 1 mol. % (thick red curve and filled square); (b) 2 mol. % (thick green curve and filled circle); and (c) 3 mol. % (thick blue curve and filled triangle). Both the experimental data points and theoretical fits for the exposure intensity of 18mW/cm2 are shown.

Fig. 4.
Fig. 4.

Normalized transmission characteristics for samples with three different PQ concentrations: (a) 1 mol. % (thick red curve and filled square); (b) 2 mol. % (thick green curve and filled circle); and (c) 3 mol. % (thick blue curve and filled triangle). Both the experimental data points and theoretical fits for the exposure intensity of 36mW/cm2 are shown.

Fig. 5.
Fig. 5.

Normalized transmission characteristics for samples with three different PQ concentrations: (a) 1 mol. % (thick red curve and filled square); (b) 2 mol. % (thick green curve and filled circle); and (c) 3 mol. % (thick blue curve and filled triangle). Both the experimental data points and theoretical fits for the exposure intensity of 54mW/cm2 are shown.

Fig. 6.
Fig. 6.

Normalized transmission characteristics for samples with PQ concentration of 1 mol. % with exposure intensity of 36mW/cm2, texp=420s, and toff=15 h, after the laser is switched on again. Only experimental data is shown.

Fig. 7.
Fig. 7.

Refractive index modulation characteristics for samples with two different PQ concentrations: (a) 2 mol. % (thick green curve and filled circle) and (b) 3 mol. % (thick blue curve and filled triangle). Both the experimental data points and theoretical fits for a spatial frequency of 1428lines/mm are shown.

Tables (5)

Tables Icon

Table 1. Key Parameters for Different PQ Concentrations for a Wavelength of 473 nm and Optical Density and Transmittance Values for Three Different PQ Concentrations at 633 nm

Tables Icon

Table 2. Summary of the Experiments Performed: Dye Concentration, Exposure Times and the Different Exposure Intensities Applied

Tables Icon

Table 3. Values of Dye Absorption Related Parameters Extracted by Fitting the Experimental Data in Figs. 35 Using the Model in Part 1 [1]

Tables Icon

Table 4. Mean Refractive Indices for All Wavelengths and the Initial Volume Fraction of Each Component in the Material before Exposure [18]

Tables Icon

Table 5. Values of Material Parameters Extracted by Fitting the Experimental Data in Fig. 7 Using the Model in Part 1 [1]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D=log10(T),
T(t)=I0×TsfIa(x,t)I0=Tsfexp{[ε[PQ(t)]ε1[PQ*1(t)]]d},
T0=Tsfexp{ε[PQ(0)]d},
η(t)Id(t)Id(t)+It(t).
η(t)=sin2[πdn1(t)λpcosθin],
A=WρnPQ21nPQ2+2,
A=4π3Nmα,
nPQ=3W+8πρNmα3W4πρNmα.

Metrics