Abstract

Phenanthrenequinone (PQ) doped poly(methyl methacrylate) (PMMA) photopolymer material has received much attention in the literature. However, further development requires that a more physical material model be developed. In this article, such a model is presented. The model includes: (1) the time-varying photon absorption, including the absorptivity of a second absorber, i.e., the singlet excited state of PQ; (2) the recovery/regeneration and the bleaching of the excited-state PQ; (3) the nonlocal effect; and (4) the diffusion effects of both the ground- and excited-state PQ molecules and of the methyl methacrylate (MMA). A set of rate equations are derived, governing the temporal and spatial variations of each chemical component concentration. Compared to previous models presented in the literature in this paper: (1) the second absorber is included; (2) the diffusion of all the PQ states is considered; and (3) the first-harmonic refractive index modulation is calculated in a more physically reasonable way. Simulations of the normalized transmission are presented. The effects of the nonlocal material response and the diffusion of both ground-state and excited-state PQ molecules are also examined. The model is applied to analyze experimental results in Part 2 of this paper.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Hopographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  2. J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).
  3. N. Capolla and R. A. Lessard, “Processing of holograms recorded in methylene blue sensitized gelatin,” Appl. Opt. 27, 3008–3012 (1988).
    [CrossRef]
  4. J. J. A. Couture and R. A. Lessard, “Modulation transfer function measurements for thin layers of azo dyes in PVA matrix used as an optical recording material,” Appl. Opt. 27, 3368–3374 (1988).
    [CrossRef]
  5. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
    [CrossRef]
  6. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
    [CrossRef]
  7. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Nonlocal response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
    [CrossRef]
  8. E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
    [CrossRef]
  9. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
    [CrossRef]
  10. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
    [CrossRef]
  11. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
    [CrossRef]
  12. S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453 (2000).
    [CrossRef]
  13. K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
    [CrossRef]
  14. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870 (2010).
    [CrossRef]
  15. E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747 (2011).
    [CrossRef]
  16. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
    [CrossRef]
  17. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
    [CrossRef]
  18. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
    [CrossRef]
  19. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
    [CrossRef]
  20. M. R. Gleeson, J. T. Sheridan, F. K. Bruder, T. Rölle, H. Berneth, M. S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).
    [CrossRef]
  21. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543–8549 (2007).
    [CrossRef]
  22. Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993–2002 (2004).
    [CrossRef]
  23. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
    [CrossRef]
  24. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  25. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
    [CrossRef]
  26. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
    [CrossRef]
  27. http://en.wikipedia.org/wiki/Fluorescence .
  28. V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77, 293–299 (2002).
  29. G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1991).
  30. J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  31. I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [CrossRef]
  32. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  34. N. J. Turro, Modern Molecular Chemistry (University Science, 1991), pp. 103.
  35. http://www.rp-photonics.com/quantum_efficiency.html .
  36. http://www.chemnet.com/cas/en/84-11-7/Phenanthrenequinone.html .
  37. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
    [CrossRef]
  38. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Nonlocal spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
    [CrossRef]
  39. Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
    [CrossRef]
  40. Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

2012

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

2011

2010

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

2009

2008

2007

2006

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

2004

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993–2002 (2004).
[CrossRef]

2003

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

2002

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77, 293–299 (2002).

2001

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

2000

1998

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

1997

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

1988

Aubrechta, I.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Berneth, H.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Bruder, F. K.

Butovskaya, G. V.

Capolla, N.

Castro, J. M.

Chen, W.

Close, C. E.

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Couture, J. J. A.

Curtis, K.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Hopographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Dhar, L.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Hopographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Fäcke, T.

Fouassier, J. P.

J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).

Gallego, S.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

Gleeson, M. R.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F. K. Bruder, T. Rölle, H. Berneth, M. S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Nonlocal spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

Guo, J.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Nonlocal spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Hill, A.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Hopographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Hoff, D.

Hsiao, Y.

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Hsiao, Y. N.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993–2002 (2004).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453 (2000).
[CrossRef]

Kashin, O.

Kelly, J. V.

Korolev, V. V.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77, 293–299 (2002).

Kostuk, R. K.

Koudela, I.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Kowarschik, R.

E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[CrossRef]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Nonlocal response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543–8549 (2007).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

Krul, L. P.

Lalevee, J.

J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Lessard, R. A.

Li, H.

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

Lin, S. H.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993–2002 (2004).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453 (2000).
[CrossRef]

Liu, S.

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Nonlocal spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

Mahilny, U. V.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Marmysh, D. N.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Matusevich, A.

Matusevich, V.

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747 (2011).
[CrossRef]

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Nonlocal response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253–11258 (2008).
[CrossRef]

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543–8549 (2007).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

Matusevich, Y. I.

McLeod, R. R.

Milera, M.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Murashko, E. A.

Murphy, L.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Hopographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Myer, B.

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

O’Neill, F. T.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1991).

Qi, Y.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

Rölle, T.

Sabol, D.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Sheridan, J. T.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Nonlocal spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F. K. Bruder, T. Rölle, H. Berneth, M. S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28, 2833–2843 (2011).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

Stankevich, A. I.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Syutkin, V. M.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77, 293–299 (2002).

Tolkatchev, V. A.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77, 293–299 (2002).

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

Tolstik, E.

Turro, N. J.

N. J. Turro, Modern Molecular Chemistry (University Science, 1991), pp. 103.

Vyazovkin, V. L.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77, 293–299 (2002).

Weiser, M. S.

Whang, W. T.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993–2002 (2004).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453 (2000).
[CrossRef]

Winkler, A.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Zhang, D.

Appl. Opt.

Appl. Phys. B

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302 (2006).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784–786 (2009).
[CrossRef]

J. Appl. Phys.

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

J. Mod. Opt.

I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

J. Opt.

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13, 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Nonlocal spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

J. Opt. A

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302 (2008).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Eng.

Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993–2002 (2004).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Phys. Res. Int.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

React. Kinet. Catal. Lett.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77, 293–299 (2002).

Other

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1991).

http://en.wikipedia.org/wiki/Fluorescence .

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B30, 3308–3315 (2013).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

N. J. Turro, Modern Molecular Chemistry (University Science, 1991), pp. 103.

http://www.rp-photonics.com/quantum_efficiency.html .

http://www.chemnet.com/cas/en/84-11-7/Phenanthrenequinone.html .

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Hopographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Flow chart of the photochemical process. (All the parameters are defined in the text.)

Fig. 2.
Fig. 2.

Normalized transmission during and post-exposure for different ε 1 values. (a)  ε 1 = 0 (thick red curve). (b)  ε 1 = 1.0 × 10 5 cm 2 / mol (thick green short dashed curve). (c)  ε 1 = 3.7 × 10 5 cm 2 / mol (thick blue long dashed curve).

Fig. 3.
Fig. 3.

Normalized transmission during and post-exposure for different k s t values. (a)  k s t = 3.0 × 10 3 s 1 (thick red curve). (b)  k s t = 6.1 × 10 3 s 1 (thick green short dashed curve). (c)  k s t = 6.1 × 10 2 s 1 (thick blue long dashed curve).

Fig. 4.
Fig. 4.

(i) First-harmonic index modulation for different nonlocal response length values. (a)  σ = 0 (red continuous curve). (b)  σ = 50 nm (green short dashed curve). (c)  σ = 100 nm (blue long dashed curve). In all cases, it is assumed that no diffusion by PQ, PQ * 1 , or PQ * 3 takes place. (ii) The comparison of first-harmonic index modulation for different nonlocal response length values. (a)  Δ n 1 = n 1 ( t , σ = 50 ) n 1 ( t , σ = 0 ) (continuous yellow curve). (b)  Δ n 1 = n 1 ( t , σ = 100 ) n 1 ( t , σ = 0 ) (dashed purple curve). In all cases, it is assumed that no diffusion by PQ, PQ * 1 , or PQ * 3 takes place.

Fig. 5.
Fig. 5.

First-harmonic index modulation for different PQ diffusion rates. (a)  D PQ = 0 (thick red curve). (b)  D PQ = 1.09 × 10 16 cm 2 / s (thick green short dashed curve). (c)  D PQ = 1.09 × 10 14 cm 2 / s (thick blue long dashed curve). (d)  D PQ = 1.09 × 10 13 cm 2 / s (thin purple curve).

Fig. 6.
Fig. 6.

First-harmonic index modulation for different PQ * 1 diffusion rates. (a)  D PQ * 1 = 0 (thick red curve). (b)  D PQ * 1 = 1.09 × 10 16 cm 2 / s (thick green short dashed curve). (c)  D PQ * 1 = 1.09 × 10 14 cm 2 / s (thick blue long dashed curve). (d)  D PQ * 1 = 1.09 × 10 13 cm 2 / s (thin purple curve).

Fig. 7.
Fig. 7.

First-harmonic index modulation for different PQ * 3 diffusion rates. (a)  D PQ * 3 = 0 (thick red curve). (b)  D PQ * 3 = 1.09 × 10 16 cm 2 / s (thick green short dashed curve). (c)  D PQ * 3 = 1.09 × 10 14 cm 2 / s (thick blue long dashed curve). (d)  D PQ * 3 = 1.09 × 10 13 cm 2 / s (thin purple curve).

Fig. 8.
Fig. 8.

Difference between the results in Figs. 6 and 7, i.e., Δ n 1 = n 1 ( t , D PQ = D PQ * 1 = D PQ * 3 = D ) n 1 ( t , D PQ = D PQ * 1 = D , D PQ * 3 = 0 ) . (a)  D = 0 (thick red curve). (b)  D = 1.09 × 10 16 cm 2 / s (thick green short dashed curve). (c)  D = 1.09 × 10 14 cm 2 / s (thick blue long dashed curve). (d)  D = 1.09 × 10 13 cm 2 / s (thin purple continuous curve).

Tables (2)

Tables Icon

Table 1. Predicted Values of the Maximum Amplitude of the First Harmonic of the PQ-PMMA Grating ( n 1 ) Following Heat Treatment

Tables Icon

Table 2. Predicted Values of the Modulation of the PQ-PMMA Grating ( n 1 ) Following Heat Treatment for Different Spatial Frequencies, when During Exposurea

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

PQ + h υ k a PQ 1 * ,
PQ 1 * k r 1 PQ ,
PQ 1 * k s t PQ 3 * ,
PQ 3 * k r 2 PQ .
PQ 3 * + RH k i HPQ + R ,
PQ 3 * + Z k b Bleached State .
HPQ + R k t HPQR ,
HPQ + HPQ k r c Recombined Product ,
MMA + PQ 3 * k i PQ / MMA .
d [ PQ ( x , t ) ] d t = d d x { D PQ ( x , t ) d [ PQ ( x , t ) ] d x } k a [ PQ ( x , t ) ] + k r 1 [ PQ 1 * ( x , t ) ] + k r 2 [ PQ 3 * ( x , t ) ] ,
d [ PQ 1 * ( x , t ) ] d t = d d x { D PQ 1 * ( x , t ) d [ PQ 1 * ( x , t ) ] d x } + k a [ PQ ( x , t ) ] k r 1 [ PQ 1 * ( x , t ) ] k s t [ PQ 1 * ( x , t ) ] ,
d [ PQ 3 * ( x , t ) ] d t = d d x { D PQ 3 * ( x , t ) d [ PQ 3 * ( x , t ) ] d x } + k s t [ PQ 1 * ( x , t ) ] k r 2 [ PQ 3 * ( x , t ) ] k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] k i [ PQ 3 * ( x , t ) ] [ M ( x , t ) ] k b [ PQ 3 * ( x , t ) ] [ Z ( x , t ) ] ,
d [ RH ( x , t ) ] d t = k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] ,
d [ HPQ ( x , t ) ] d t = k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] k r c [ HPQ ( x , t ) ] 2 G ( x , x ) k t [ HPQ ( x , t ) ] [ R ( x , t ) ] d x ,
d [ R ( x , t ) ] d t = k i [ PQ 3 * ( x , t ) ] [ RH ( x , t ) ] G ( x , x ) k t [ HPQ ( x , t ) ] [ R ( x , t ) ] d x ,
d [ M ( x , t ) ] d t = d d x [ D M ( x , t ) d [ M ( x , t ) ] d x ] k i [ PQ 3 * ( x , t ) ] [ M ( x , t ) ] ,
d [ P 1 ( x , t ) ] d t = k i [ PQ 3 * ( x , t ) ] [ M ( x , t ) ] ,
d [ P 2 ( x , t ) ] d t = G ( x , x ) k t [ HPQ ( x , t ) ] [ R ( x , t ) ] d x ,
d [ Z ( x , t ) ] d t = d d x [ D Z d [ Z ( x , t ) ] d x ] k b [ PQ 3 * ( x , t ) ] [ Z ( x , t ) ] .
G ( x , x ) = 1 2 π σ exp [ ( x x ) 2 2 σ ] ,
ϕ M + ϕ RH + ϕ P 1 + ϕ P 2 + ϕ PQ + ϕ SPQ = 1 .
n 2 1 n 2 + 2 = ρ W = N N A Π .
Π = ( N M Π M + N RH Π RH + N P 1 Π P 1 + N P 2 Π P 2 + N PQ Π PQ + N SPQ Π SPQ ) / N ,
N X = ϕ X [ ρ X N A / W X ] ,
n 2 1 n 2 + 2 = ρ W N ( N M Π M + N RH Π RH + N P 1 Π P 1 + N P 2 Π P 2 + N PQ Π PQ + N S PQ Π S PQ ) ,
n 2 1 n 2 + 2 = ρ W N ( N M W M ρ M × n M 2 1 n M 2 + 2 + N RH W RH ρ RH × n RH 2 1 n RH 2 + 2 + N P 1 W P 1 ρ P 1 × n P 1 2 1 n P 1 2 + 2 + N P 2 W P 2 ρ P 2 × n P 2 2 1 n P 2 2 + 2 + N PQ W PQ ρ PQ × n PQ 2 1 n PQ 2 + 2 + N S PQ W S PQ ρ S PQ × n S PQ 2 1 n S PQ 2 + 2 ) .
n 2 1 n 2 + 2 = ϕ M × n M 2 1 n M 2 + 2 + ϕ RH × n RH 2 1 n RH 2 + 2 + ϕ P 1 × n P 1 2 1 n P 1 2 + 2 + ϕ P 2 × n P 2 2 1 n P 2 2 + 2 + ϕ PQ × n PQ 2 1 n PQ 2 + 2 + ϕ SPQ × n SPQ 2 1 n SPQ 2 + 2 .
n 2 1 n 2 + 2 = ϕ M ( n M 2 1 n M 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ P 1 ( n P 1 2 1 n P 1 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ P 2 ( n P 2 2 1 n P 2 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ PQ ( n PQ 2 1 n PQ 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ SPQ ( n SPQ 2 1 n SPQ 2 + 2 n RH 2 1 n RH 2 + 2 ) + n RH 2 1 n RH 2 + 2 .
ϕ ( x , t ) = m = 0 + ϕ m ( t ) cos ( m K x ) .
n 1 ( t ) = ( n dark 2 + 2 ) 2 6 n dark [ ϕ 1 M ( t ) ( n M 2 1 n M 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ 1 P 1 ( t ) ( n P 1 2 1 n P 1 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ 1 P 2 ( t ) ( n P 2 2 1 n P 2 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ 1 PQ ( t ) ( n PQ 2 1 n PQ 2 + 2 n RH 2 1 n RH 2 + 2 ) + ϕ 1 SPQ ( t ) ( n SPQ 2 1 n SPQ 2 + 2 n RH 2 1 n RH 2 + 2 ) ] ,
I a ( x , t ) = I 0 T s f ( 1 exp { ε [ PQ ( x , t ) ] d ε 1 [ PQ 1 * ( x , t ) ] d } ) ,
T ( t ) = I 0 T s f I a ( x , t ) I 0 = T s f exp { [ ε [ PQ ( t ) ] ε 1 [ PQ 1 * ( t ) ] ] d } .
Δ n 1 = n 1 ( t , D PQ = D PQ 1 * = D PQ 3 * = D ) n 1 ( t , D PQ = D PQ 1 * = D , D PQ 3 * = 0 )

Metrics