Abstract

A new design is proposed to increase the single-mode current range of low threshold current, photonic crystal vertical-cavity surface-emitting lasers. Our method is based on the optical coupling between the usual central defect and six others of nearly identical sizes. The resulting honeycomb configuration aims to spread higher supermodes in transverse directions, and to reduce their overlap with a central current-injected region. Simultaneous confinement of the fundamental mode within the central cavity and the shift of higher modes toward outer trapping defects can lead to stable single-mode operation. Simulations confirm that either in-phase or out-of-phase coupled supermodes could be promoted by slightly modifying the areas of outer cavities, while thermal lensing always stabilizes the in-phase coupled supermodes. The single-mode current regime should be extended noticeably compared to the conventional single-defect lasers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
    [CrossRef]
  2. Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
    [CrossRef]
  3. D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38, 1599–1606 (2002).
    [CrossRef]
  4. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
    [CrossRef]
  5. T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
    [CrossRef]
  6. S. Shinada and F. Koyama, “Single high-order transverse mode surface-emitting laser with controlled far-field pattern,” IEEE Photon. Technol. Lett. 14, 1641–1643 (2002).
    [CrossRef]
  7. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
    [CrossRef]
  8. B. G. Griffin, A. Arbabi, M. P. Tan, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Demonstration of enhanced side-mode suppression in metal-filled photonic crystal vertical cavity lasers,” Opt. Lett. 38, 1936–1938 (2013).
    [CrossRef]
  9. N. Yokouchi, A. J. Danner, and K. D. Choquette, “Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 1439–1445 (2003).
    [CrossRef]
  10. P. S. Ivanov, H. J. Unold, R. Michalzik, J. Maehnss, K. J. Ebeling, and I. A. Sukhoivanov, “Theoretical study of cold-cavity single-mode conditions in vertical-cavity surface-emitting lasers with incorporated two-dimensional photonic crystals,” J. Opt. Soc. Am. B 20, 2442–2447 (2003).
    [CrossRef]
  11. Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
    [CrossRef]
  12. P. S. Ivanov, M. Dragas, M. Cryan, and J. M. Rorison, “Theoretical investigation of transverse optical modes in photonic-crystal waveguides embedded into proton implanted and oxide-confined vertical-cavity surface emitting lasers,” J. Opt. Soc. Am. B 22, 2270–2276 (2005).
    [CrossRef]
  13. D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
    [CrossRef]
  14. T. Czyszanowski, M. Dems, and K. Panajotov, “Single mode condition and modes discrimination in photonic-crystal 1.3  μm AlInGaAs/InP VCSEL,” Opt. Express 15, 5604–5609 (2007).
    [CrossRef]
  15. T. Czyszanowski, M. Dems, and K. Panajotov, “Optimal parameters of photonic crystal vertical-cavity surface-emitting diode lasers,” J. Lightwave Technol. 25, 2331–2336 (2007).
    [CrossRef]
  16. T. Czyszanowski, M. Dems, R. P. Sarzala, K. Panajotov, and K. D. Choquette, “Photonic crystal VCSELs: detailed comparison of experimental and theoretical spectral characteristics,” IEEE J. Sel. Top. Quantum Electron. 19, 1701908 (2013).
  17. A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett. 41, 325–326 (2005).
    [CrossRef]
  18. A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett. 88, 091114 (2006).
    [CrossRef]
  19. L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
    [CrossRef]
  20. L. Mutter, V. Iakovlev, A. Caliman, A. Mereuta, A. Sirbu, and E. Kapon, “1.3  mm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction,” Opt. Express 17, 8558–8566 (2009).
    [CrossRef]
  21. J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
    [CrossRef]
  22. M. T. Johnson, D. F. Siriani, J. D. Sulkin, and K. D. Choquette, “Phase and coherence extraction from a phased vertical cavity laser array,” Appl. Phys. Lett. 101, 031116 (2012).
    [CrossRef]
  23. P. Nyakas, “Optical simulation of coupled defect cavities in photonic crystal vertical-cavity surface-emitting lasers,” Proc. SPIE 7720, 77201M (2010).
    [CrossRef]
  24. A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
    [CrossRef]
  25. P. Nyakas, “Asymmetric design and simulation of ring-defect photonic crystal vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 23, 1869–1871 (2011).
    [CrossRef]
  26. M. Dems, I.-S. Chung, P. Nyakas, S. Bischoff, and K. Panajotov, “Numerical methods for modeling photonic-crystal VCSELs,” Opt. Express 18, 16042–16054 (2010).
    [CrossRef]
  27. P. S. Ivanov and J. Rorison, “Theoretical optimization of transverse waveguiding in oxide-confined VCSELs with internal photonic crystals,” J. Opt. Soc. Am. B 26, 2461–2468 (2009).
    [CrossRef]
  28. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974–5986 (2012).
    [CrossRef]
  29. P. Nyakas, G. Varga, Zs. Puskás, N. Hashizume, T. Kárpáti, T. Veszprémi, and Gy. Zsombok, “Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 23, 1761–1769 (2006).
    [CrossRef]
  30. P. Nyakas, “Full-vectorial three-dimensional finite element optical simulation of vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 25, 2427–2434 (2007).
    [CrossRef]
  31. L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimization of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” J. Lightwave Technol. 31, 1360–1366 (2013).
    [CrossRef]
  32. P. S. Ivanov, P. J. Heard, M. J. Cryan, and J. M. Rorison, “Comparative study of mode control in vertical-cavity surface-emitting lasers with photonic crystal and micropillar etching,” IEEE J. Quantum Electron. 47, 1257–1265 (2011).
    [CrossRef]
  33. M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, “Planar photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).
    [CrossRef]
  34. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
    [CrossRef]
  35. G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements,” Appl. Phys. Lett. 74, 899–901 (1999).
    [CrossRef]

2013

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

T. Czyszanowski, M. Dems, R. P. Sarzala, K. Panajotov, and K. D. Choquette, “Photonic crystal VCSELs: detailed comparison of experimental and theoretical spectral characteristics,” IEEE J. Sel. Top. Quantum Electron. 19, 1701908 (2013).

M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, “Planar photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).
[CrossRef]

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimization of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” J. Lightwave Technol. 31, 1360–1366 (2013).
[CrossRef]

B. G. Griffin, A. Arbabi, M. P. Tan, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Demonstration of enhanced side-mode suppression in metal-filled photonic crystal vertical cavity lasers,” Opt. Lett. 38, 1936–1938 (2013).
[CrossRef]

2012

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974–5986 (2012).
[CrossRef]

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

M. T. Johnson, D. F. Siriani, J. D. Sulkin, and K. D. Choquette, “Phase and coherence extraction from a phased vertical cavity laser array,” Appl. Phys. Lett. 101, 031116 (2012).
[CrossRef]

2011

P. Nyakas, “Asymmetric design and simulation of ring-defect photonic crystal vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 23, 1869–1871 (2011).
[CrossRef]

P. S. Ivanov, P. J. Heard, M. J. Cryan, and J. M. Rorison, “Comparative study of mode control in vertical-cavity surface-emitting lasers with photonic crystal and micropillar etching,” IEEE J. Quantum Electron. 47, 1257–1265 (2011).
[CrossRef]

2010

M. Dems, I.-S. Chung, P. Nyakas, S. Bischoff, and K. Panajotov, “Numerical methods for modeling photonic-crystal VCSELs,” Opt. Express 18, 16042–16054 (2010).
[CrossRef]

P. Nyakas, “Optical simulation of coupled defect cavities in photonic crystal vertical-cavity surface-emitting lasers,” Proc. SPIE 7720, 77201M (2010).
[CrossRef]

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

2009

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

L. Mutter, V. Iakovlev, A. Caliman, A. Mereuta, A. Sirbu, and E. Kapon, “1.3  mm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction,” Opt. Express 17, 8558–8566 (2009).
[CrossRef]

P. S. Ivanov and J. Rorison, “Theoretical optimization of transverse waveguiding in oxide-confined VCSELs with internal photonic crystals,” J. Opt. Soc. Am. B 26, 2461–2468 (2009).
[CrossRef]

2007

2006

P. Nyakas, G. Varga, Zs. Puskás, N. Hashizume, T. Kárpáti, T. Veszprémi, and Gy. Zsombok, “Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 23, 1761–1769 (2006).
[CrossRef]

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett. 88, 091114 (2006).
[CrossRef]

2005

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett. 41, 325–326 (2005).
[CrossRef]

P. S. Ivanov, M. Dragas, M. Cryan, and J. M. Rorison, “Theoretical investigation of transverse optical modes in photonic-crystal waveguides embedded into proton implanted and oxide-confined vertical-cavity surface emitting lasers,” J. Opt. Soc. Am. B 22, 2270–2276 (2005).
[CrossRef]

2004

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

2003

2002

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38, 1599–1606 (2002).
[CrossRef]

S. Shinada and F. Koyama, “Single high-order transverse mode surface-emitting laser with controlled far-field pattern,” IEEE Photon. Technol. Lett. 14, 1641–1643 (2002).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

2000

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

1999

G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements,” Appl. Phys. Lett. 74, 899–901 (1999).
[CrossRef]

Amann, M.-C.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Arbabi, A.

Baba, T.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

Bao, L.

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

Bischoff, S.

Böhm, G.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Caliman, A.

Chen, H.-D.

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

Chen, W.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

Choquette, K. D.

M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, “Planar photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).
[CrossRef]

T. Czyszanowski, M. Dems, R. P. Sarzala, K. Panajotov, and K. D. Choquette, “Photonic crystal VCSELs: detailed comparison of experimental and theoretical spectral characteristics,” IEEE J. Sel. Top. Quantum Electron. 19, 1701908 (2013).

B. G. Griffin, A. Arbabi, M. P. Tan, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Demonstration of enhanced side-mode suppression in metal-filled photonic crystal vertical cavity lasers,” Opt. Lett. 38, 1936–1938 (2013).
[CrossRef]

M. T. Johnson, D. F. Siriani, J. D. Sulkin, and K. D. Choquette, “Phase and coherence extraction from a phased vertical cavity laser array,” Appl. Phys. Lett. 101, 031116 (2012).
[CrossRef]

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett. 88, 091114 (2006).
[CrossRef]

A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett. 41, 325–326 (2005).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 1439–1445 (2003).
[CrossRef]

Chung, I.-S.

Cryan, M.

Cryan, M. J.

P. S. Ivanov, P. J. Heard, M. J. Cryan, and J. M. Rorison, “Comparative study of mode control in vertical-cavity surface-emitting lasers with photonic crystal and micropillar etching,” IEEE J. Quantum Electron. 47, 1257–1265 (2011).
[CrossRef]

Czyszanowski, T.

Danner, A. J.

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett. 88, 091114 (2006).
[CrossRef]

A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett. 41, 325–326 (2005).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 1439–1445 (2003).
[CrossRef]

Debernardi, P.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Dems, M.

Dragas, M.

Ebeling, K. J.

Ebert, P.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Elkin, N. N.

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

Frasunkiewicz, L.

Furukawa, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

Geen, M.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Geiger, K.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Giannopoulos, A. V.

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

Giudice, G. E.

G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements,” Appl. Phys. Lett. 74, 899–901 (1999).
[CrossRef]

Goddard, L. L.

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Grasse, C.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Griffin, B. G.

Gründl, T.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Gustavsson, J. S.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Haglund, Å.

Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Haglund, E.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Harren, A. C. L.

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

Hashizume, N.

Heard, P. J.

P. S. Ivanov, P. J. Heard, M. J. Cryan, and J. M. Rorison, “Comparative study of mode control in vertical-cavity surface-emitting lasers with photonic crystal and micropillar etching,” IEEE J. Quantum Electron. 47, 1257–1265 (2011).
[CrossRef]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Hoshi, M.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

Iakovlev, V.

Ivanov, P. S.

Joel, A.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Johnson, M. T.

M. T. Johnson, D. F. Siriani, J. D. Sulkin, and K. D. Choquette, “Phase and coherence extraction from a phased vertical cavity laser array,” Appl. Phys. Lett. 101, 031116 (2012).
[CrossRef]

Kan, Q.

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

Kapon, E.

Kárpáti, T.

Kasten, A. M.

B. G. Griffin, A. Arbabi, M. P. Tan, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Demonstration of enhanced side-mode suppression in metal-filled photonic crystal vertical cavity lasers,” Opt. Lett. 38, 1936–1938 (2013).
[CrossRef]

M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, “Planar photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).
[CrossRef]

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

Kim, C. K.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Kim, N.-H.

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

Kim, S. H.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Kim, T. S.

A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett. 41, 325–326 (2005).
[CrossRef]

Koyama, F.

S. Shinada and F. Koyama, “Single high-order transverse mode surface-emitting laser with controlled far-field pattern,” IEEE Photon. Technol. Lett. 14, 1641–1643 (2002).
[CrossRef]

Kuksenkov, D. V.

G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements,” Appl. Phys. Lett. 74, 899–901 (1999).
[CrossRef]

Larsson, A.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Lawrence, R.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Lear, K. L.

G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements,” Appl. Phys. Lett. 74, 899–901 (1999).
[CrossRef]

Lee, Y. H.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Lehman, A. C.

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

Leisher, P. O.

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett. 88, 091114 (2006).
[CrossRef]

Liu, A.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

Liu, D.

Maehnss, J.

Matsuzono, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

Mawst, L. J.

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38, 1599–1606 (2002).
[CrossRef]

Mereuta, A.

Meyer, R.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Michalzik, R.

Modh, P.

Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Moritoh, K.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

Müller, M.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Mutter, L.

Nakwaski, W.

Napartovich, A. P.

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

Nyakas, P.

Ortsiefer, M.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

Panajotov, K.

Park, H. G.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Puskás, Zs.

Qu, H.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

Raftery, J. J.

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett. 88, 091114 (2006).
[CrossRef]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Rorison, J.

Rorison, J. M.

P. S. Ivanov, P. J. Heard, M. J. Cryan, and J. M. Rorison, “Comparative study of mode control in vertical-cavity surface-emitting lasers with photonic crystal and micropillar etching,” IEEE J. Quantum Electron. 47, 1257–1265 (2011).
[CrossRef]

P. S. Ivanov, M. Dragas, M. Cryan, and J. M. Rorison, “Theoretical investigation of transverse optical modes in photonic-crystal waveguides embedded into proton implanted and oxide-confined vertical-cavity surface emitting lasers,” J. Opt. Soc. Am. B 22, 2270–2276 (2005).
[CrossRef]

Safaisini, R.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Sarzala, R. P.

T. Czyszanowski, M. Dems, R. P. Sarzala, K. Panajotov, and K. D. Choquette, “Photonic crystal VCSELs: detailed comparison of experimental and theoretical spectral characteristics,” IEEE J. Sel. Top. Quantum Electron. 19, 1701908 (2013).

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimization of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” J. Lightwave Technol. 31, 1360–1366 (2013).
[CrossRef]

Sasaki, S.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

Shinada, S.

S. Shinada and F. Koyama, “Single high-order transverse mode surface-emitting laser with controlled far-field pattern,” IEEE Photon. Technol. Lett. 14, 1641–1643 (2002).
[CrossRef]

Shuai, B.

Sigga, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Sirbu, A.

Siriani, D. F.

M. T. Johnson, D. F. Siriani, J. D. Sulkin, and K. D. Choquette, “Phase and coherence extraction from a phased vertical cavity laser array,” Appl. Phys. Lett. 101, 031116 (2012).
[CrossRef]

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

Song, D. S.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

Sukhoivanov, I. A.

Sulkin, J. D.

M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, “Planar photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).
[CrossRef]

M. T. Johnson, D. F. Siriani, J. D. Sulkin, and K. D. Choquette, “Phase and coherence extraction from a phased vertical cavity laser array,” Appl. Phys. Lett. 101, 031116 (2012).
[CrossRef]

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

Tan, M. P.

M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, “Planar photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).
[CrossRef]

B. G. Griffin, A. Arbabi, M. P. Tan, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Demonstration of enhanced side-mode suppression in metal-filled photonic crystal vertical cavity lasers,” Opt. Lett. 38, 1936–1938 (2013).
[CrossRef]

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

Temkin, H.

G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements,” Appl. Phys. Lett. 74, 899–901 (1999).
[CrossRef]

Troshchieva, V. N.

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

Unold, H. J.

Varga, G.

Veszprémi, T.

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Vukušic, J. A.

Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Vysotsky, D. V.

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

Wang, C.-X.

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

Wasiak, M.

Westbergh, P.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Xia, L.

Xie, Y.-Y.

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

Xing, M.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

Xu, C.

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

Yokouchi, N.

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 1439–1445 (2003).
[CrossRef]

Zhang, Y.

Zheng, W.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

Zhou, D.

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38, 1599–1606 (2002).
[CrossRef]

Zhou, W.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

Zhu, Y.-X.

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

Zsombok, Gy.

Appl. Phys. Lett.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85, 5161–5163 (2004).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[CrossRef]

A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett. 88, 091114 (2006).
[CrossRef]

J. J. Raftery, A. C. Lehman, A. J. Danner, P. O. Leisher, A. V. Giannopoulos, and K. D. Choquette, “In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers,” Appl. Phys. Lett. 89, 081119 (2006).
[CrossRef]

M. T. Johnson, D. F. Siriani, J. D. Sulkin, and K. D. Choquette, “Phase and coherence extraction from a phased vertical cavity laser array,” Appl. Phys. Lett. 101, 031116 (2012).
[CrossRef]

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 96, 151103 (2010).
[CrossRef]

G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements,” Appl. Phys. Lett. 74, 899–901 (1999).
[CrossRef]

Electron. Lett.

A. J. Danner, T. S. Kim, and K. D. Choquette, “Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett. 41, 325–326 (2005).
[CrossRef]

IEEE J. Quantum Electron.

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38, 1599–1606 (2002).
[CrossRef]

P. S. Ivanov, P. J. Heard, M. J. Cryan, and J. M. Rorison, “Comparative study of mode control in vertical-cavity surface-emitting lasers with photonic crystal and micropillar etching,” IEEE J. Quantum Electron. 47, 1257–1265 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, “Planar photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900107 (2013).
[CrossRef]

T. Czyszanowski, M. Dems, R. P. Sarzala, K. Panajotov, and K. D. Choquette, “Photonic crystal VCSELs: detailed comparison of experimental and theoretical spectral characteristics,” IEEE J. Sel. Top. Quantum Electron. 19, 1701908 (2013).

N. Yokouchi, A. J. Danner, and K. D. Choquette, “Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 1439–1445 (2003).
[CrossRef]

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).
[CrossRef]

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, “Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 909–917 (2009).
[CrossRef]

L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Modeling, fabrication, and characterization of large aperture two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11, 968–981 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Nyakas, “Asymmetric design and simulation of ring-defect photonic crystal vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 23, 1869–1871 (2011).
[CrossRef]

S. Shinada and F. Koyama, “Single high-order transverse mode surface-emitting laser with controlled far-field pattern,” IEEE Photon. Technol. Lett. 14, 1641–1643 (2002).
[CrossRef]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850  nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[CrossRef]

Å. Haglund, J. S. Gustavsson, J. A. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[CrossRef]

Y.-Y. Xie, Q. Kan, C. Xu, Y.-X. Zhu, C.-X. Wang, and H.-D. Chen, “Low threshold current single-fundamental-mode photonic crystal VCSELs,” IEEE Photon. Technol. Lett. 24, 464–466 (2012).
[CrossRef]

J. Appl. Phys.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigga, “The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE

P. Nyakas, “Optical simulation of coupled defect cavities in photonic crystal vertical-cavity surface-emitting lasers,” Proc. SPIE 7720, 77201M (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Fundamental and (b) higher-order modes of a common single-defect PhC-VCSEL. Depicted is the normalized dominant transverse electric field component in the plane of the QW. The higher-order mode has a degenerated eigenpair with orthogonal azimuthal orientation. Black curves mark the contours of the holes and of the implant aperture. Holes in the second and third rows are labeled as A-, B-, and C-types, respecting the sixfold symmetry.

Fig. 2.
Fig. 2.

Four relevant supermodes of the HPhC-VCSEL. (a) In-phase, (b) out-of-phase coupled supermodes are formed from the fundamental modes of the seven cavities, and (c), (d) evolve similarly from higher-order modes.

Fig. 3.
Fig. 3.

Four relevant supermodes of a HPhC-VCSEL with shallow, narrow holes etched to the six outer cavities.

Fig. 4.
Fig. 4.

Significant supermodes of a modified HPhC-VCSEL possessing slightly wider B- and C-type holes.

Fig. 5.
Fig. 5.

Investigated supermodes of a modified HPhC-VCSEL with slightly narrower B- and C-type holes.

Fig. 6.
Fig. 6.

Calculated wavelengths, cold-cavity losses, and transverse confinement factors of four supermodes as a function of diameter of B- and C-type holes. Full symbols represent the HPhC-VCSEL incorporating narrow A-type holes. This last β has a loss of 47.8cm1, which is out of the plotted range.

Fig. 7.
Fig. 7.

Simulated temperature profile inside the HPhC-VCSEL, when the maximal value exceeds the heat sink temperature by 10 °C. The distribution is fairly cylindrical, but some floral pattern may be recognized around the innermost holes. The active region is marked with a dark red line.

Fig. 8.
Fig. 8.

Calculated properties of the lowest-order modes of a single-defect PhC-VCSEL (dashed lines) and of the relevant supermodes of a HPhC-VCSEL with narrow C-type holes (solid lines). Losses and confinement factors are plotted against the maximal temperature difference.

Fig. 9.
Fig. 9.

Confinement factors for moderate heating. The insets illustrate γ supermodes for 10 °C (left), 20 °C and 25 °C temperature increases, and a new one for 28.5 °C that resembles the LP11 of the single-defect laser (right).

Fig. 10.
Fig. 10.

Calculated losses and confinement factors of the relevant modes for temperatures elevated by 30 °C–50 °C. Insets depict the higher modes of the two lasers at 30 °C heating.

Metrics