Abstract

We present a high-energy, high-average-power picosecond laser system based on a hybrid chain in a master oscillator power amplifier configuration. The chain is seeded by a Ti:sapphire oscillator, followed by a Yb-doped fiber preamplifier, a Nd:YAG-based regenerate amplifier, and a Nd:YVO4-based single-pass amplifier. The final diode-pumped, solid-state amplifier is detailed and produces pulses with more than 10 mJ energy at 32 W average power with 207 ps duration, corresponding to 50 MW peak power. The picosecond pulse output is seeded and optically synchronized with the sub-5-fs oscillator for optical parametric chirped-pulse amplification pumping.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
    [CrossRef]
  2. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22  W of average power at 1  MHz repetition rate,” Opt. Express 20, 10870–10878 (2012).
    [CrossRef]
  3. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
    [CrossRef]
  4. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34, 2123–2125 (2009).
    [CrossRef]
  5. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36, 2456–2458 (2011).
    [CrossRef]
  6. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34, 3439–3441 (2009).
    [CrossRef]
  7. E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).
  8. K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35, 1752–1754 (2010).
    [CrossRef]
  9. B. A. Reagan, K. A. Wernsing, A. H. Curtis, F. J. Furch, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “Demonstration of a 100  Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser,” Opt. Lett. 37, 3624–3626 (2012).
    [CrossRef]
  10. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010).
    [CrossRef]
  11. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10  Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19, 5357–5363 (2011).
    [CrossRef]
  12. S. Klingebiel, I. Ahmad, C. Wandt, C. Skrobol, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Experimental and theoretical investigation of timing jitter inside a stretcher-compressor setup,” Opt. Express 20, 3443–3455 (2012).
    [CrossRef]
  13. M. Lührmann, C. Theobald, R. Wallenstein, and J. A. L’huillier, “High energy cw-diode pumped Nd:YVO4 regenerative amplifier with efficient second harmonic generation,” Opt. Express 17, 22761–22766 (2009).
    [CrossRef]
  14. C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, “High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping,” Appl. Phys. B 103, 5–8 (2011).
    [CrossRef]
  15. D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38, 3021–3023 (2013).
    [CrossRef]
  16. K. Michailovas, V. Smilgevicius, and A. Michailovas, “Kilohertz rate picosecond pulses amplifier for pumping of OPCPA system,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.3.
  17. K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).
  18. M. Hemmer, A. Vaupel, and M. Richardson, “Current status of the HERACLES, a millijoule level, multi kHz, few-cycle, and CEP stabilized OPCPA system,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuFF5.
  19. S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe, “1.5  mJ, 6.4  fs parametric chirped-pulse amplification system at 1  kHz,” Opt. Lett. 32, 2487–2489 (2007).
    [CrossRef]
  20. M. Hemmer, A. Vaupel, M. Wohlmuth, and M. Richardson, “OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering,” Appl. Phys. B 106, 599–603 (2012).
    [CrossRef]
  21. M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, “Multi-kHz, multi-mJ, phase stabilized, OPCPA amplifier system,” Proc. SPIE 7578, 757818 (2010).
  22. A. V. Okishev, C. Dorrer, V. I. Smirnov, L. B. Glebov, and J. D. Zuegel, “Spectral filtering in a diode-pumped Nd:YLF regenerative amplifier using a volume Bragg grating,” Opt. Express 15, 8197–8202 (2007).
    [CrossRef]
  23. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
    [CrossRef]
  24. J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).
  25. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  26. S. Seidel and N. Kugler, “Nd: YAG 200-W average-power oscillator-amplifier system with stimulated-Brillouin-scattering phase conjugation and depolarization compensation,” J. Opt. Soc. Am. B 14, 1885–1888 (1997).
    [CrossRef]
  27. J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
    [CrossRef]
  28. E. Wyss and M. Roth, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38, 1620–1628 (2002).
    [CrossRef]
  29. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10, 350–351 (1980).
    [CrossRef]
  30. Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).
  31. Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).
  32. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
    [CrossRef]
  33. N. Andreev and N. Bondarenko, “Single-mode YAG:Nd laser with a stimulated Brillouin scattering mirror and conversion of radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1051 (1991).
    [CrossRef]
  34. M. Ostermeyer, G. Klemz, P. Kubina, and R. Menzel, “Quasi-continuous-wave birefringence-compensated single-and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573–7582 (2002).
    [CrossRef]
  35. D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
    [CrossRef]

2013 (2)

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).

D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38, 3021–3023 (2013).
[CrossRef]

2012 (5)

2011 (4)

2010 (3)

2009 (6)

2007 (3)

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

A. V. Okishev, C. Dorrer, V. I. Smirnov, L. B. Glebov, and J. D. Zuegel, “Spectral filtering in a diode-pumped Nd:YLF regenerative amplifier using a volume Bragg grating,” Opt. Express 15, 8197–8202 (2007).
[CrossRef]

S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe, “1.5  mJ, 6.4  fs parametric chirped-pulse amplification system at 1  kHz,” Opt. Lett. 32, 2487–2489 (2007).
[CrossRef]

2006 (2)

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

2002 (2)

E. Wyss and M. Roth, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38, 1620–1628 (2002).
[CrossRef]

M. Ostermeyer, G. Klemz, P. Kubina, and R. Menzel, “Quasi-continuous-wave birefringence-compensated single-and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573–7582 (2002).
[CrossRef]

1999 (1)

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

1997 (1)

1991 (1)

N. Andreev and N. Bondarenko, “Single-mode YAG:Nd laser with a stimulated Brillouin scattering mirror and conversion of radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1051 (1991).
[CrossRef]

1980 (1)

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

1971 (1)

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Adachi, S.

Adamonis, J.

J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).

Ahmad, I.

Ališauskas, S.

Altmann, R. K.

Andreev, N.

N. Andreev and N. Bondarenko, “Single-mode YAG:Nd laser with a stimulated Brillouin scattering mirror and conversion of radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1051 (1991).
[CrossRef]

Andreev, N. F.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Andriukaitis, G.

Antipenkov, R.

J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).

Balciunas, T.

Baltuška, A.

Bondarenko, N.

N. Andreev and N. Bondarenko, “Single-mode YAG:Nd laser with a stimulated Brillouin scattering mirror and conversion of radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1051 (1991).
[CrossRef]

Brown, D. C.

Chen, M.-C.

Curtis, A. H.

de Wit, M.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Demmler, S.

Dolkemeyer, J.

Dorrer, C.

Drescher, M.

Duesterer, S.

Eggleton, B. J.

Eikema, K. S. E.

Faatz, B.

Fan, T. Y.

Feldhaus, J.

Freidman, G. I.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Fujita, M.

Furch, F. J.

Furuse, H.

Gallmann, L.

C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, “High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping,” Appl. Phys. B 103, 5–8 (2011).
[CrossRef]

Ginzburg, V. N.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Glebov, L. B.

Gopinath, J. T.

Gottschall, T.

Guelzow, J.

Hädrich, S.

Headley, D.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

Heese, C.

C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, “High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping,” Appl. Phys. B 103, 5–8 (2011).
[CrossRef]

Hemmer, M.

M. Hemmer, A. Vaupel, M. Wohlmuth, and M. Richardson, “OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering,” Appl. Phys. B 106, 599–603 (2012).
[CrossRef]

M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, “Multi-kHz, multi-mJ, phase stabilized, OPCPA amplifier system,” Proc. SPIE 7578, 757818 (2010).

M. Hemmer, A. Vaupel, and M. Richardson, “Current status of the HERACLES, a millijoule level, multi kHz, few-cycle, and CEP stabilized OPCPA system,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuFF5.

Herrmann, D.

Hoefer, M.

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

Hoffmann, D.

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

Hong, K.-H.

Huang, S.-W.

Hybl, J. D.

Imasaki, K.

Inoue, K.

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).

Ishii, H.

Ishii, N.

Ishii, S.

Kan, H.

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).

Kanai, T.

Kapteyn, H. C.

Karsch, S.

Kärtner, F. X.

Katin, E. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Kawanaka, J.

Keller, U.

C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, “High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping,” Appl. Phys. B 103, 5–8 (2011).
[CrossRef]

Khazanov, E. A.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Kienberger, R.

Killi, A.

Kirsanov, A. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Klemz, G.

Klingebiel, S.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Kolenda, J.

J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).

Kosuge, A.

Kowalewski, K.

Krausz, F.

Kubina, P.

Kugler, N.

Kulagin, O. V.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Kuznetsov, I. I.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).

L’huillier, J. A.

Li, E.

Limpert, J.

Lozhkarev, V. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Luchinin, G. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Lührmann, M.

Luther, B. M.

Luttmann, J.

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

Major, Z.

Mal’shakov, A. N.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Mans, T.

Martyanov, M. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Menoni, C. S.

Menzel, R.

Metzger, T.

Michailovas, A.

J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).

K. Michailovas, V. Smilgevicius, and A. Michailovas, “Kilohertz rate picosecond pulses amplifier for pumping of OPCPA system,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.3.

Michailovas, K.

K. Michailovas, V. Smilgevicius, and A. Michailovas, “Kilohertz rate picosecond pulses amplifier for pumping of OPCPA system,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.3.

Miyanaga, N.

Morgenweg, J.

Movshevich, B. Z.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Mukhin, I. B.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).

Murnane, M. M.

Nicklaus, K.

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

Noom, D. W. E.

Oehler, A. E.

C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, “High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping,” Appl. Phys. B 103, 5–8 (2011).
[CrossRef]

Ogawa, T.

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).

Okishev, A. V.

Ostermeyer, M.

Palashov, O. V.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Pasmanik, G. A.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Patel, D.

Perevezentsev, E. A.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).

Pervak, V.

Piskarskas, A. P.

J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).

Popmintchev, T.

Poprawe, R.

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

Porter, J.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

Poteomkin, A. K.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Pugžlys, A.

Quality, D. B.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Rambo, P.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

Ramsey, M.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

Rand, D.

Reagan, B. A.

Richardson, M.

M. Hemmer, A. Vaupel, M. Wohlmuth, and M. Richardson, “OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering,” Appl. Phys. B 106, 599–603 (2012).
[CrossRef]

M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, “Multi-kHz, multi-mJ, phase stabilized, OPCPA amplifier system,” Proc. SPIE 7578, 757818 (2010).

M. Hemmer, A. Vaupel, and M. Richardson, “Current status of the HERACLES, a millijoule level, multi kHz, few-cycle, and CEP stabilized OPCPA system,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuFF5.

Riedel, R.

Rocca, J. J.

Rodchenkov, V. I.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Rossbach, J.

Roth, M.

E. Wyss and M. Roth, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38, 1620–1628 (2002).
[CrossRef]

Rothhardt, J.

Russbueldt, P.

Saiki, T.

Schlarb, H.

Schmid, K.

Schnitzler, C.

Schulz, M.

Schwarz, A.

Schwarz, J.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

Scott, A.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Scott, W. C.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Seidel, S.

Seise, E.

Sergeev, A. M.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Shashkin, V. V.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Shaykin, A. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Siddiqui, A. M.

Singley, J. M.

Skrobol, C.

Smilgevicius, V.

K. Michailovas, V. Smilgevicius, and A. Michailovas, “Kilohertz rate picosecond pulses amplifier for pumping of OPCPA system,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.3.

Smirnov, V. I.

Smith, I.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

Soan, P.

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Soms, L. N.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Sutter, D.

Takeshita, K.

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

Tautz, R.

Tavella, F.

Teisset, C. Y.

Theobald, C.

Trushin, S. A.

Tünnermann, A.

Varanavicius, A.

J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).

Vaupel, A.

M. Hemmer, A. Vaupel, M. Wohlmuth, and M. Richardson, “OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering,” Appl. Phys. B 106, 599–603 (2012).
[CrossRef]

M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, “Multi-kHz, multi-mJ, phase stabilized, OPCPA amplifier system,” Proc. SPIE 7578, 757818 (2010).

M. Hemmer, A. Vaupel, and M. Richardson, “Current status of the HERACLES, a millijoule level, multi kHz, few-cycle, and CEP stabilized OPCPA system,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuFF5.

Veisz, L.

Vitali, V.

Wada, S.

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).

Wallenstein, R.

Wandt, C.

Wang, Y.

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).

Watanabe, S.

Webb, B.

M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, “Multi-kHz, multi-mJ, phase stabilized, OPCPA amplifier system,” Proc. SPIE 7578, 757818 (2010).

Wernsing, K. A.

Wester, R.

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

Willner, A.

Witte, S.

Wohlmuth, M.

M. Hemmer, A. Vaupel, M. Wohlmuth, and M. Richardson, “OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering,” Appl. Phys. B 106, 599–603 (2012).
[CrossRef]

Wyss, E.

E. Wyss and M. Roth, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38, 1620–1628 (2002).
[CrossRef]

Yakovlev, I. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (1)

Appl. Phys. B (3)

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006).
[CrossRef]

M. Hemmer, A. Vaupel, M. Wohlmuth, and M. Richardson, “OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering,” Appl. Phys. B 106, 599–603 (2012).
[CrossRef]

C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, “High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping,” Appl. Phys. B 103, 5–8 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

E. Wyss and M. Roth, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38, 1620–1628 (2002).
[CrossRef]

J. Opt. A (1)

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).

Laser Phys. Lett. (1)

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (9)

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011).
[CrossRef]

S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe, “1.5  mJ, 6.4  fs parametric chirped-pulse amplification system at 1  kHz,” Opt. Lett. 32, 2487–2489 (2007).
[CrossRef]

D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38, 3021–3023 (2013).
[CrossRef]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
[CrossRef]

K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35, 1752–1754 (2010).
[CrossRef]

B. A. Reagan, K. A. Wernsing, A. H. Curtis, F. J. Furch, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “Demonstration of a 100  Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser,” Opt. Lett. 37, 3624–3626 (2012).
[CrossRef]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34, 2123–2125 (2009).
[CrossRef]

M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36, 2456–2458 (2011).
[CrossRef]

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34, 3439–3441 (2009).
[CrossRef]

Proc. SPIE (2)

K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).

M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, “Multi-kHz, multi-mJ, phase stabilized, OPCPA amplifier system,” Proc. SPIE 7578, 757818 (2010).

Quantum Electron. (2)

J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).

Sov. J. Quantum Electron. (2)

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10, 350–351 (1980).
[CrossRef]

N. Andreev and N. Bondarenko, “Single-mode YAG:Nd laser with a stimulated Brillouin scattering mirror and conversion of radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1051 (1991).
[CrossRef]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

M. Hemmer, A. Vaupel, and M. Richardson, “Current status of the HERACLES, a millijoule level, multi kHz, few-cycle, and CEP stabilized OPCPA system,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuFF5.

K. Michailovas, V. Smilgevicius, and A. Michailovas, “Kilohertz rate picosecond pulses amplifier for pumping of OPCPA system,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the hybrid ultrafast/fiber/solid-state system with optically synchronized high-energy and high-average-power picosecond pump beam with the femtosecond seed. List of acronyms: PP, pulse picker; TFP, thin-film polarizer; λ/2, half-wave plate; FR, Faraday rotator; HR, highly reflective mirror; PC, Pockels cell; λ/4, quarter-wave plate; VBG, volume Bragg grating.

Fig. 2.
Fig. 2.

Amplification characteristics of the single-pass amplifier based on 2 mm diameter Nd:YVO4 seeded by the regenerative amplifier based on Nd:YAG. The typical output beam profile is shown in the inset.

Fig. 3.
Fig. 3.

Output signal of the Nd:YVO4 single-pass amplifier recorded with a fast photodiode.

Fig. 4.
Fig. 4.

Schematic of the amplifier stage showing thermal lens and depolarization compensation optics and two identical amplifier modules. List of acronyms: ISO, optical isolator consisting of two TFP, FR, and λ/2; QR, 90 deg quartz rotator; λ/4, quarter-wave plate.

Fig. 5.
Fig. 5.

Observed beam profiles after a single pass through the two identical amplifiers at full thermal load with (a) no quartz rotator and (b) 90 deg quartz rotator. A polarizer was used in front of the beam profiler with indicated direction.

Fig. 6.
Fig. 6.

Influence of the thermal lens compensation scheme on the obtainable amplification gain. Characteristic beam profiles are shown for the case of f=40cm.

Fig. 7.
Fig. 7.

High-power amplification characteristics of the double-passed booster stage and obtained beam profiles.

Fig. 8.
Fig. 8.

Measured second-harmonic autocorrelation traces for the seed (top) and amplified pulses (bottom) indicating durations of 211 and 207 ps, respectively.

Metrics