Abstract

The transmission characteristics of silver–dielectric superlenses in photolithographic applications are studied here and are shown to introduce significant spatial frequency-specific artifacts into images of subwavelength patterns when the superlens is below a certain thickness. These artifacts have a negative impact on the fidelity of patterns produced by photoresists exposed through superlenses, which is not ideal in photolithography applications. The cause of the artifacts is identified as a mismatch between the dc transmission coefficient and the peak transmission coefficient of the superlens, which is normally placed beyond the conventional diffraction limit. We show that this mismatch can be corrected by increasing the thickness of the component layers within the superlens, with the result that the total transmission through the superlens is reduced but the range of spatial frequencies that can be transmitted without severe distortion is increased. Analyses and examples are presented for superlens designs that maximize the spatial frequency bandwidth over which good imaging can be expected; systems with a total thickness of 120–140 nm are optimal, delivering superresolution imaging over spatial frequency bandwidths of up to 6.6μm1.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  2. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
    [CrossRef]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  4. G. Tremblay and Y. Sheng, “Designing the metallic superlens close to the cutoff of the long-range mode,” Opt. Express 18, 740–745 (2010).
    [CrossRef]
  5. V. A. Podolskiy and N. A. Kuhta, “Optimizing the superlens: Manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87, 231113 (2005).
    [CrossRef]
  6. K. Lee, H. Park, J. Kim, G. Kang, and K. Kim, “Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption,” Opt. Express 16, 1711–1718 (2008).
    [CrossRef]
  7. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. A 23, 2383–2392 (2006).
    [CrossRef]
  8. International Technology Roadmap for Semiconductors, http://www.intel.com/technology/silicon/itroadmap.htm , retrieved March 25, 2011.
  9. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
    [CrossRef]
  10. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  11. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).
  12. M. Scalora, G. D’Aguanno, M. Mattiucci, and M. J. Bloemer, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15, 508–523 (2007).
    [CrossRef]
  13. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
    [CrossRef]
  14. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon resonance,” Opt. Express 12, 3055–3065 (2004).
    [CrossRef]
  15. D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).
  16. D. R. Lide, The CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2008).
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  18. P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd’s mirror as a testbed for plasmon-enhanced high-NA lithography,” Proc. SPIE 7970, 79701L (2011).
  19. P. Mehrotra, C. A. Mack, and R. J. Blaikie, “A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures,” Opt. Express 21, 13710–13725 (2013).
    [CrossRef]
  20. C. P. Moore and R. J. Blaikie, “Experimental characterization of the transfer function for a silver-dielectric superlens,” Opt. Express 20, 6412–6420 (2012).
    [CrossRef]
  21. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
    [CrossRef]
  22. D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23, 461–467 (2006).
    [CrossRef]
  23. R. Kotyński and T. Stefaniuk, “Multiscale analysis of subwavelength imaging with metal-dielectric multilayers,” Opt. Lett. 35, 1133–1135 (2010).
    [CrossRef]
  24. S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
    [CrossRef]
  25. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd’s mirror as a testbed for plasmon-enhanced high-NA lithography,” Proc. SPIE 7970, 79701L (2011).

2010 (3)

2008 (2)

2007 (3)

M. Scalora, G. D’Aguanno, M. Mattiucci, and M. J. Bloemer, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15, 508–523 (2007).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).

2006 (2)

D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23, 461–467 (2006).
[CrossRef]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. A 23, 2383–2392 (2006).
[CrossRef]

2005 (4)

V. A. Podolskiy and N. A. Kuhta, “Optimizing the superlens: Manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87, 231113 (2005).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[CrossRef]

2004 (1)

2003 (2)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).

2002 (1)

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Akozbek, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Arnold, M. D.

Blaikie, R. J.

Bloemer, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Bloemer, M. J.

Bones, P. J.

Chaturvedi, P.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

D’Aguanno, G.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

M. Scalora, G. D’Aguanno, M. Mattiucci, and M. J. Bloemer, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15, 508–523 (2007).
[CrossRef]

Durant, S.

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. A 23, 2383–2392 (2006).
[CrossRef]

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[CrossRef]

Fang, N.

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Fang, N. X.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Holzwarth, C. W.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd’s mirror as a testbed for plasmon-enhanced high-NA lithography,” Proc. SPIE 7970, 79701L (2011).

Ishihara, T.

Islam, M. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Kang, G.

Kim, J.

Kim, K.

Kotynski, R.

Kuhta, N. A.

V. A. Podolskiy and N. A. Kuhta, “Optimizing the superlens: Manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87, 231113 (2005).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Lee, K.

Lide, D. R.

D. R. Lide, The CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2008).

Liu, Z.

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. A 23, 2383–2392 (2006).
[CrossRef]

Logeeswaran, V. J.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Luo, X.

Mack, C. A.

Mattiucci, M.

Mattiucci, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Mehrotra, P.

P. Mehrotra, C. A. Mack, and R. J. Blaikie, “A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures,” Opt. Express 21, 13710–13725 (2013).
[CrossRef]

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd’s mirror as a testbed for plasmon-enhanced high-NA lithography,” Proc. SPIE 7970, 79701L (2011).

Melville, D. O. S.

Moore, C. P.

Park, H.

Pendry, J. B.

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Podolskiy, V. A.

V. A. Podolskiy and N. A. Kuhta, “Optimizing the superlens: Manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87, 231113 (2005).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Scalora, M.

M. Scalora, G. D’Aguanno, M. Mattiucci, and M. J. Bloemer, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15, 508–523 (2007).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Schultz, S.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Schurig, D.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Sheng, Y.

Smith, D. R.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Steele, J. M.

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. A 23, 2383–2392 (2006).
[CrossRef]

Stefaniuk, T.

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Tremblay, G.

Wang, S. Y.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Williams, R. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Wu, W.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Yu, Z.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Zhang, X.

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. A 23, 2383–2392 (2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

V. A. Podolskiy and N. A. Kuhta, “Optimizing the superlens: Manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87, 231113 (2005).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86, 126101 (2005).
[CrossRef]

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

J. Mod. Opt. (2)

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. Opt. Soc. Am. A (2)

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
[CrossRef]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. A 23, 2383–2392 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. B (2)

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Physica B (1)

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197–202 (2007).

Proc. SPIE (1)

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd’s mirror as a testbed for plasmon-enhanced high-NA lithography,” Proc. SPIE 7970, 79701L (2011).

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Other (2)

International Technology Roadmap for Semiconductors, http://www.intel.com/technology/silicon/itroadmap.htm , retrieved March 25, 2011.

D. R. Lide, The CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Magnitude transfer functions for a 10|20|10nm PMMA|Ag|SiO2 superlens (solid line) and a 10|120|10nm PMMA|Ag|SiO2 superlens (dashed line). (b) Phase transfer functions for the superlenses described in (a). (c) Object (dotted line) and image intensity profiles produced by the superlenses described in (a). (d) Binary photoresist profiles developed from the image intensity profiles in (c).

Fig. 2.
Fig. 2.

Domain used for transfer-matrix method calculations.

Fig. 3.
Fig. 3.

(a) Magnitude transfer function for a 120 nm thick slab of silver suspended between semi-infinite slabs of PMMA [24], annotated with measurements that are used to define the bandwidth metric. (b) Magnitude transfer function contours for the family of 10|x|10nm PMMA|Ag|SiO2 superlenses, where x is varied between 10 and 150 nm in 1 nm steps. The color bar maps the logarithm of intensity, log10(|t|2), in arbitrary units. (c) Phase transfer function contours for the superlenses examined in (b). The color bar maps phase, t, in degrees.

Fig. 4.
Fig. 4.

Bandwidth contours for the family of y|x|y PMMA|Ag|SiO2 superlenses, where x and y span from 10 to 150 nm in 1 nm steps. The color bar maps bandwidth, B, in μm1.

Fig. 5.
Fig. 5.

(a) Magnitude transfer function for a 30|60|30nm PMMA|Ag|SiO2 superlens. Matching transmission coefficients in the propagating and evanescent (beyond 4.2μm1) regions leads to two passbands and a high total bandwidth. (b) 100 nm pitch object (dashed line) and image (solid line) intensity profiles produced by the same superlens.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

tint=T11T22T12T21T22,
rint=T21T22,
T=[T11T12T21T22]=12k2zϵz[ϵ2kz2+ϵ1k1zϵ2kz2ϵ1k1zϵ2kz2ϵ1k1zϵ2kz2+ϵ1k1z].
t=eikNzdNn=1N1eiknzdn·tintn·eik(n+1)zdn.
H=|t|2t.
B=Bprop+Bevan.
B=(1.80.0)+(9.95.9)
=5.8μm1.

Metrics