Abstract

Surface modification of fused silica windows caused by the ablation of surface-bound microparticles under short pulse laser irradiation is investigated and related to beam propagation effects. Particle material dispersal and subsequent surface pitting after multiple pulses of 351 nm, 9J/cm2 laser light were found to depend strongly on material type and particle size. Surface pitting was most significant for opaque materials (aluminum, steel, acetal homopolymer), yielding pits as deep as 600 nm for 30μm diameter particles. Transparent particles (PET polymer, glass) tended to disperse material more widely and caused less pitting (100nm) than the opaque materials. Paraxial light propagation analysis showed that phase objects created by ablated opaque materials resulted in higher peak intensification (3x) than those created by transparent materials (1.5x). The fragmentation of ablated material is discussed in terms of brittle or ductile failure at high strain rates, indicating reasonable agreement between experiment and theory. An approximation for the laser-induced plasma pressure and size of the dispersal pattern is derived, indicating an inverse correlation with material density.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85, 3837–3843 (1999).
    [CrossRef]
  2. A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).
  3. A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
    [CrossRef]
  4. S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47, 1164–1170 (2008).
    [CrossRef]
  5. Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
    [CrossRef]
  6. M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
    [CrossRef]
  7. S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031 (2008).
  8. J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
    [CrossRef]
  9. F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
    [CrossRef]
  10. D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
    [CrossRef]
  11. A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
    [CrossRef]
  12. Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
    [CrossRef]
  13. J. P. Nilaya, M. B. S. Prasad, and D. J. Biswas, “Observation of pitting due to field enhanced surface absorption during laser assisted cleaning of translucent particulates off metal surfaces,” Appl. Surf. Sci. 263, 25–28 (2012).
    [CrossRef]
  14. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
    [CrossRef]
  15. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National ignition facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
    [CrossRef]
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  17. C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
    [CrossRef]
  18. D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36, 353 (1988).
    [CrossRef]
  19. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
    [CrossRef]
  20. C. S. Yih, “Fluid mechanics of colliding plates,” Phys. Fluids 17, 1936–1940 (1974).
  21. M. J. Matthews, R. M. Vignes, D. Cooke, S. T. Yang, and J. S. Stolken, “Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy,” Opt. Lett. 35, 1311–1313 (2010).
    [CrossRef]
  22. S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20, 1575–1587 (2012).
    [CrossRef]
  23. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
    [CrossRef]
  24. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
    [CrossRef]
  25. M. J. Matthews, C. W. Carr, H. A. Bechtel, and R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett. 99, 151109 (2011).
    [CrossRef]
  26. A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
    [CrossRef]
  27. B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
    [CrossRef]

2013 (1)

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

2012 (3)

Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

J. P. Nilaya, M. B. S. Prasad, and D. J. Biswas, “Observation of pitting due to field enhanced surface absorption during laser assisted cleaning of translucent particulates off metal surfaces,” Appl. Surf. Sci. 263, 25–28 (2012).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20, 1575–1587 (2012).
[CrossRef]

2011 (2)

J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
[CrossRef]

M. J. Matthews, C. W. Carr, H. A. Bechtel, and R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett. 99, 151109 (2011).
[CrossRef]

2010 (1)

2009 (1)

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

2008 (3)

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031 (2008).

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
[CrossRef]

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47, 1164–1170 (2008).
[CrossRef]

2007 (1)

2006 (2)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[CrossRef]

2005 (1)

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

2004 (1)

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[CrossRef]

2003 (2)

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

2000 (1)

1999 (1)

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85, 3837–3843 (1999).
[CrossRef]

1997 (3)

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

1992 (1)

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

1988 (1)

D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36, 353 (1988).
[CrossRef]

1974 (1)

C. S. Yih, “Fluid mechanics of colliding plates,” Phys. Fluids 17, 1936–1940 (1974).

Adams, J. J.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[CrossRef]

Afzal, M.

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

Ang, B. W.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

Armstrong, M. R.

J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
[CrossRef]

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Auerbach, J. M.

Bartnicki, E.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Bechtel, H. A.

M. J. Matthews, C. W. Carr, H. A. Bechtel, and R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett. 99, 151109 (2011).
[CrossRef]

Behymer, E. M.

J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
[CrossRef]

Berthe, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Bhatt, R. B.

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

Biswas, D. J.

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

J. P. Nilaya, M. B. S. Prasad, and D. J. Biswas, “Observation of pitting due to field enhanced surface absorption during laser assisted cleaning of translucent particulates off metal surfaces,” Appl. Surf. Sci. 263, 25–28 (2012).
[CrossRef]

Bowers, M. W.

Capoulade, J.

Carr, C. W.

M. J. Matthews, C. W. Carr, H. A. Bechtel, and R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett. 99, 151109 (2011).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[CrossRef]

Chan, D. S. H.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

Cheng, X. F.

Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Cooke, D.

Cooke, D. J.

Crowhurst, J. C.

J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
[CrossRef]

Das, A. K.

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

Delaporte, P.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
[CrossRef]

Dixit, S. N.

Donohue, E. E.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Eder, D. C.

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Elhadj, S.

Erbert, G. V.

Fabbro, R.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Faux, D. R.

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Feit, M. D.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[CrossRef]

F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

Foster, A. S.

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
[CrossRef]

Garcia, S.

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031 (2008).

Genin, F. Y.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Grady, D. E.

D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36, 353 (1988).
[CrossRef]

Grisolia, C.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

Grojo, D.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
[CrossRef]

Habib, M. N.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

Hackel, R. P.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Heyns, M. M.

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85, 3837–3843 (1999).
[CrossRef]

Hollingsworth, W. G.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Hong, M. H.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[CrossRef]

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

Honig, J.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

Jancaitis, K. S.

Jeanloz, R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

Johnson, M. A.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

Knight, K. B.

J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
[CrossRef]

Kozlowski, M. R.

F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Kumar, A.

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

Leung, W. P.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

Low, T. S.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

Lu, Y. F.

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

Luk’Yanchuk, B. S.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[CrossRef]

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Manes, K. R.

Marshall, C. D.

Martin, M. C.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

Matthews, M. J.

Mehta, N. C.

Menapace, J.

Miao, X. X.

Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Milam, D.

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Moses, E.

Murray, J. R.

Natoli, J. Y.

Nilaya, J. P.

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

J. P. Nilaya, M. B. S. Prasad, and D. J. Biswas, “Observation of pitting due to field enhanced surface absorption during laser assisted cleaning of translucent particulates off metal surfaces,” Appl. Surf. Sci. 263, 25–28 (2012).
[CrossRef]

Norton, M. A.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Nostrand, M. C.

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National ignition facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Orth, C. D.

Pakarinen, O. H.

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
[CrossRef]

Palmier, S.

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031 (2008).

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47, 1164–1170 (2008).
[CrossRef]

Panakkal, J. P.

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

Panero, W. R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

Patterson, R.

Penetrante, B. M.

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Peyre, P.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Prasad, M. B. S.

J. P. Nilaya, M. B. S. Prasad, and D. J. Biswas, “Observation of pitting due to field enhanced surface absorption during laser assisted cleaning of translucent particulates off metal surfaces,” Appl. Surf. Sci. 263, 25–28 (2012).
[CrossRef]

Raman, R. N.

M. J. Matthews, C. W. Carr, H. A. Bechtel, and R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett. 99, 151109 (2011).
[CrossRef]

Riddle, R. A.

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Rohr, E.

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85, 3837–3843 (1999).
[CrossRef]

Rosanvallon, S.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

Rubenchik, A. M.

F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Rullier, J. L.

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031 (2008).

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47, 1164–1170 (2008).
[CrossRef]

Sacks, R. A.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Salleo, A.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

Sands, T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Sentis, M.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
[CrossRef]

Shapiro, A. B.

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

Shaw, M. J.

Song, W. D.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[CrossRef]

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

Spaeth, M.

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Stolken, J. S.

Sutton, S. B.

Tam, A. C.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Taylor, S. T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Tollier, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

Van Wonterghem, B. M.

Vatry, A.

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

Vereecke, G.

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85, 3837–3843 (1999).
[CrossRef]

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

Vignes, R. M.

Wang, Z. B.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[CrossRef]

Wegner, P. J.

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

White, R. K.

Widmayer, C. C.

Williams, W. H.

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

Xiang, X.

Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Yang, S. T.

Ye, Y. Y.

Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Yih, C. S.

C. S. Yih, “Fluid mechanics of colliding plates,” Phys. Fluids 17, 1936–1940 (1974).

Yoshiyama, J.

Yuan, X. D.

Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Zapka, W.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Zaug, J. M.

J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
[CrossRef]

Ziemlich, W.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (2)

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A 79, 747–751 (2004).
[CrossRef]

Y. F. Lu, W. D. Song, B. W. Ang, M. H. Hong, D. S. H. Chan, and T. S. Low, “A theoretical model for laser removal of particles from solid surfaces,” Appl. Phys. A 65, 9–13 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

D. Grojo, P. Delaporte, M. Sentis, O. H. Pakarinen, and A. S. Foster, “The so-called dry laser cleaning governed by humidity at the nanometer scale,” Appl. Phys. Lett. 92, 033108 (2008).
[CrossRef]

M. J. Matthews, C. W. Carr, H. A. Bechtel, and R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett. 99, 151109 (2011).
[CrossRef]

Appl. Surf. Sci. (2)

A. Vatry, M. N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, and S. Rosanvallon, “Experimental investigation on laser removal of carbon and tungsten particles,” Appl. Surf. Sci. 255, 5569–5573 (2009).
[CrossRef]

J. P. Nilaya, M. B. S. Prasad, and D. J. Biswas, “Observation of pitting due to field enhanced surface absorption during laser assisted cleaning of translucent particulates off metal surfaces,” Appl. Surf. Sci. 263, 25–28 (2012).
[CrossRef]

J. Appl. Phys. (3)

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82, 2826–2832 (1997).
[CrossRef]

G. Vereecke, E. Rohr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85, 3837–3843 (1999).
[CrossRef]

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

J. Mech. Phys. Solids (1)

D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36, 353 (1988).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355  nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[CrossRef]

Nat. Mater. (1)

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[CrossRef]

Nucl. Technol. (1)

A. Kumar, R. B. Bhatt, M. Afzal, J. P. Panakkal, D. J. Biswas, J. P. Nilaya, and A. K. Das, “Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,” Nucl. Technol. 182, 242–247 (2013).

Opt. Eng. (1)

S. Palmier, S. Garcia, and J. L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47, 0842031 (2008).

Opt. Express (1)

Opt. Lett. (1)

Optik (1)

Y. Y. Ye, X. D. Yuan, X. Xiang, X. F. Cheng, and X. X. Miao, “Laser cleaning of particle and grease contaminations on the surface of optics,” Optik 123, 1056–1060 (2012).
[CrossRef]

Phys. Fluids (1)

C. S. Yih, “Fluid mechanics of colliding plates,” Phys. Fluids 17, 1936–1940 (1974).

Phys. Rev. Lett. (1)

J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 1443021 (2011).
[CrossRef]

Proc. SPIE (3)

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2003).
[CrossRef]

M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. B. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, and M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” Proc. SPIE 2966, 417–424 (1997).
[CrossRef]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM images of typical 10μm sized particles before and after initial laser pulse, with the arrow indicating the time sequence. Materials shown are (a) PET-G, (b) acetal homopolymer, (c) silica, (d) NG3 glass, (e) aluminum, and (f) stainless steel.

Fig. 2.
Fig. 2.

(a) Final diameter of 1900 fumed aluminum particles following an initial laser pulse of 9J/cm2 as a function of initial particle diameter. The red line plotted with the data (symbols) represents a linear fit with a slope of 2.51 and fixed offset of 0. (b) Ratio of final to initial particle diameter as a function of local fluence (symbols) along with a fluence histogram (line; scale not shown).

Fig. 3.
Fig. 3.

Microscope image showing the evolution of 60μm diameter (a) acetal homopolymer and (b) PET-G particles following three UV laser pulses, from left to right in each figure. The numbers listed at the top of each image indicate the laser fluence in J/cm2. The right-most panel indicates the position of the respective surface height lineouts shown in (c).

Fig. 4.
Fig. 4.

(a) Log–log volume of pit created after multiple laser pulses as a function of lateral particle area and (b) maximum pit depth as a function of initial particle diameter. Error bars shown in (a) were derived from the effect of upper and lower estimates of surface location on estimated volume. The dashed line in (a) represents a slope of 71 nm.

Fig. 5.
Fig. 5.

(a) Calculated phase map based on surface height measurement of pit left by 70×40μm sized acetal homopolymer particle (shown in 100μm×100μm inset micrograph). The phase map in (a) was used to construct a field at z=0 with unit intensity that was then propagated to (b) z=10mm and (c) z=100mm. Note the relatively intense central feature in (b) caused by light diffracting from pitted regions in (a) shown in red.

Fig. 6.
Fig. 6.

(a) Semi-log plot of the normalized peak intensification as a function of particle size (symbols) based on simulated phase maps of final pit morphologies after multiple laser shots. Error bars associated with I/I0 data represent the standard deviation of intensity of a background (free of debris) region of the optic surface. The solid lines shown in (a) represent power-law fits to the data. (b) Log–log plot of the maximum expected number of damage initiations on a downstream silica optic surface along 200 mm propagation distance.

Tables (2)

Tables Icon

Table 1. Experimental Parameters for Particle Materials Studied

Tables Icon

Table 2. Estimated Lateral Expansion, ξ, for the Opaque Particle Materials

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H(ωx,ωy)=exp[i2π(1λ2ωx2ωy2)1/2Δz],
H(ωx,ωy)=exp(ikΔz)exp[iπλΔz(ωx2+ωy2)],
N=ρ[φ(x,y)]dxdy,
Lb=[KIc20ρcε˙]2/3,
Ld=[8Yμcρε˙2]1/2.
P=0.39I0.7λ0.3τ0.15,
ϕt+u22=Pρ.
uPτρR.

Metrics