Abstract

The influence of an applied electric field on reversible photodegradation of disperse orange 11 doped into (poly)methyl-methacrylate (PMMA) is measured using digital imaging and conductivity measurements. Correlations between optical imaging, which measures photodegradation and recovery, and photoconductivity enables an association to be made between the damaged fragments and their contribution to current, thus establishing that damaged fragments are charged species, or polarizable. Hence, the decay and recovery process should be controllable with the applications of an electric field. Indeed, we find that the dye polymer system is highly sensitive to an applied electric field, which drastically affects the decay and recovery dynamics. We demonstrate accelerated recovery when one field polarity is applied during burning and the opposite polarity is applied during recovery. This work suggests that the damage threshold can be increased through electric field conditioning, and the results are qualitatively consistent with the domain model of Ramini. The observed behavior will provide useful input into better understanding the nature of the domains in the domain model, making it possible to design more robust materials using common polymers and molecular dopants.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
    [CrossRef]
  2. G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, Laser-Induced Damage in Optical Materials (SPIE, 1998).
  3. P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
    [CrossRef]
  4. J. F. Rabek, Polymer Photodegradation: Mechanisms and Experimental Methods (Springer, 1995).
  5. S. L. Li and J. Guillet, “Photochemistry of ketone polymers. 17. photodegradation of an amorphous ethylenes–propylene copolymer,” Macrmolecules 17, 41–50 (1984).
  6. L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
    [CrossRef]
  7. W. Yunus and C. Sheng, “Photodegradation study of methylene blue (mb) trapped in poly (methyl methacrylate) (pmma) matrix,” Suranaree J. Sci. Technol. 11, 138–142 (2004).
  8. C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005).
    [CrossRef]
  9. A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
    [CrossRef]
  10. Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
    [CrossRef]
  11. J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996).
    [CrossRef]
  12. M. Mortazavi, H. Yoon, and I. McCulloch, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)35, 198 (1994).
  13. D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
    [CrossRef]
  14. J. Kochi, “Charge-transfer excitation of molecular complexes in organic and organometallic chemistry,” Pure Appl. Chem. 63, 255–264 (1991).
    [CrossRef]
  15. P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.
  16. B. Cumpston and K. Jensen, “Photo-oxidation of polymers used in electroluminescent devices,” Synth. Met. 73, 195–199 (1995).
    [CrossRef]
  17. N. Tanaka, N. Barashkov, J. Heath, and W. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45, 3846–3851 (2006).
    [CrossRef]
  18. A. Albini, E. Fasani, and S. Pietra, “The photochemistry of azo-dyes. The wavelength-dependent photo-reduction of 4-diethylamino-4-nitroazobenzene,” J. Chem. Soc., Perkin Trans. 2, 1393–1395 (1982).
  19. A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996).
    [CrossRef]
  20. M. D. Rahn and T. A. King, “Lasers based on doped sol-gel composite glasses,” Proc. SPIE 2288, 382–391 (1994).
    [CrossRef]
  21. D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6g,” J. Phys. Chem. 88, 5956–5959 (1984).
    [CrossRef]
  22. E. T. Knobbe, B. Dunn, P. D. Fuqua, and F. Nishida, “Laser behavior and photostability characteristics of organic dye doped silicate gel materials,” Appl. Opt. 29, 2729–2733 (1990).
    [CrossRef]
  23. I. P. Kaminow, L. W. Stulz, E. A. Chandross, and C. A. Pryde, “Photobleaching of organic laser dyes in solid matrices,” Appl. Opt. 11, 1563–1567 (1972).
    [CrossRef]
  24. G. D. Peng, Z. Xiong, and P. L. Chu, “Fluorescence decay and recovery in organic dye-doped polymer optical fibers,” J. Lightwave Technol. 16, 2365–2372 (1998).
    [CrossRef]
  25. B. Howell and M. G. Kuzyk, “Amplified spontaneous emission and recoverable photodegradation in disperse-orange-11-doped-polymer,” J. Opt. Soc. Am. B 19, 1790–1793 (2002).
    [CrossRef]
  26. Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32, 958–960 (2007).
    [CrossRef]
  27. L. DesAutels, M. G. Kuzyk, and C. Brewer, “Femtosecond bulk transparent material processing and recovery,” Opt. Express 17, 18808–18819 (2009).
    [CrossRef]
  28. P. Kobrin, R. Fisher, and A. Gurrola, “Reversible photodegradation of organic light-emitting diodes,” Appl. Phys. Lett. 85, 2385–2387 (2004).
    [CrossRef]
  29. B. R. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self- healing of anthraquinone derivative dye doped polymers,” Proc. SPIE 8190, 81900N (2011).
    [CrossRef]
  30. M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997).
    [CrossRef]
  31. Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
    [CrossRef]
  32. K.-S. Kang, W. Sisk, M. Raja, and F. Farahi, “Field-enhanced photodegradation of pyrromethene dye films,” J. Photochem. Photobiol., A 121, 133–140 (1999).
    [CrossRef]
  33. S. K. Ramini and M. G. Kuzyk, “A self healing model based on polymer-mediated chromophore correlations,” J. Chem. Phys. 137, 054705 (2012).
    [CrossRef]
  34. S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013).
    [CrossRef]
  35. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, T. C. Kowalczyk, and H. S. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some disperse red 1-type polymers,” Opt. Lett. 24, 1741–1743 (1999).
    [CrossRef]
  36. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K. P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
    [CrossRef]
  37. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, K. P. Chan, T. C. Kowalczyk, X. Q. Zhang, H. S. Lackritz, S. Marder, and S. Thayumanavan, “Systematic behavior of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000).
    [CrossRef]
  38. A. Galvan-Gonzalez, G. I. Stegeman, A. K.-Y. Jen, X. Wu, M. Canva, A. C. Kowalczyk, X. Q. Zhang, H. S. Lackritz, S. Marder, S. Thayumanavan, and G. Levina, “Photostability of electro-optic polymers possessing chromophores with efficient amino donors and cyano-containing acceptors,” J. Opt. Soc. Am. B 18, 1846–1853 (2001).
    [CrossRef]
  39. B. Howell and M. G. Kuzyk, “Lasing action and photodegradation of disperse orange 11 dye in liquid solution,” Appl. Phys. Lett. 85, 1901–1903 (2004).
    [CrossRef]
  40. N. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129, 054504 (2008).
    [CrossRef]
  41. S. K. Ramini, B. R. Anderson, and M. G. Kuzyk, “Recent progress in reversible photodegradation of disperse orange 11 when doped in PMMA,” Proc. SPIE 8190, 81900P (2011).
    [CrossRef]
  42. N. J. Westfall and C. W. Dirk, “The photochemistry of the self-healing chromophore disperse orange 11,” J. Phys. Org. Chem. 25, 704–712 (2012).
    [CrossRef]
  43. B. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self-healing in disperse orange 11 dye-doped pmma,” J. Opt. Soc. Am. B 28, 528–532 (2011).
    [CrossRef]
  44. B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Testing theories of self healing using photoconductivity as a probe of photodegradation and recovery,” Proc. SPIE 8519, 85190H (2012).
    [CrossRef]
  45. K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
    [CrossRef]
  46. J. Chilton and M. T. Goosey, eds., Special Polymers for Electronics & Optoelectronics (Chapman & Hall, 1995).
  47. M. N. Vijayashree, S. V. Subramanyam, and A. G. Samuelson, “A new organic conducting material derived from 1,4-diaminoanthraquinon,” Macromolecules 25, 2988–2990 (1992).
    [CrossRef]
  48. H. O. Yadav, P. Raghavan, and T. Varadarajan, “Structural dependence on electrical properties of anthraquinone derivatives,” Synth. Met. 57, 5094–5099 (1993).
    [CrossRef]
  49. W. E. B. Shepherd, “Aggregate formation and its effect on (opto)electronic properties of guest-host organic semiconductors,” Appl. Phys. Lett. 97, 163303 (2010).
    [CrossRef]
  50. D. I. Son, “Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal Zno quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
    [CrossRef]
  51. H.-W. Zan and K.-H. Yen, “High photoresponsivity of pentacene-based organic thin-film transistors with UV-treated pmma dielectrics,” Electrochem. Solid-State Lett. 11, H222–H225 (2008).
    [CrossRef]
  52. B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
    [CrossRef]
  53. M. Fukushima, “Effects of dopants and polymer structures on electrical conductivity of organosilicon polymers,” Synth. Met. 94, 299–306 (1998).
    [CrossRef]
  54. M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. EI-19, 162–178 (1984).
    [CrossRef]
  55. W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).
  56. F. Yakuphanoglu and B. Senkal, “Electrical conductivity, photoconductivity, and optical properties of poly(1,4-diaminoanthraquinone) organic semiconductor for optoelectronic applications,” Polym. Adv. Technol. 19, 1193–1198 (2008).
    [CrossRef]
  57. M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
    [CrossRef]

2013

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013).
[CrossRef]

2012

B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Testing theories of self healing using photoconductivity as a probe of photodegradation and recovery,” Proc. SPIE 8519, 85190H (2012).
[CrossRef]

S. K. Ramini and M. G. Kuzyk, “A self healing model based on polymer-mediated chromophore correlations,” J. Chem. Phys. 137, 054705 (2012).
[CrossRef]

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

N. J. Westfall and C. W. Dirk, “The photochemistry of the self-healing chromophore disperse orange 11,” J. Phys. Org. Chem. 25, 704–712 (2012).
[CrossRef]

2011

B. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self-healing in disperse orange 11 dye-doped pmma,” J. Opt. Soc. Am. B 28, 528–532 (2011).
[CrossRef]

B. R. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self- healing of anthraquinone derivative dye doped polymers,” Proc. SPIE 8190, 81900N (2011).
[CrossRef]

S. K. Ramini, B. R. Anderson, and M. G. Kuzyk, “Recent progress in reversible photodegradation of disperse orange 11 when doped in PMMA,” Proc. SPIE 8190, 81900P (2011).
[CrossRef]

2010

W. E. B. Shepherd, “Aggregate formation and its effect on (opto)electronic properties of guest-host organic semiconductors,” Appl. Phys. Lett. 97, 163303 (2010).
[CrossRef]

D. I. Son, “Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal Zno quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

2009

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

L. DesAutels, M. G. Kuzyk, and C. Brewer, “Femtosecond bulk transparent material processing and recovery,” Opt. Express 17, 18808–18819 (2009).
[CrossRef]

2008

N. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129, 054504 (2008).
[CrossRef]

F. Yakuphanoglu and B. Senkal, “Electrical conductivity, photoconductivity, and optical properties of poly(1,4-diaminoanthraquinone) organic semiconductor for optoelectronic applications,” Polym. Adv. Technol. 19, 1193–1198 (2008).
[CrossRef]

H.-W. Zan and K.-H. Yen, “High photoresponsivity of pentacene-based organic thin-film transistors with UV-treated pmma dielectrics,” Electrochem. Solid-State Lett. 11, H222–H225 (2008).
[CrossRef]

2007

M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
[CrossRef]

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32, 958–960 (2007).
[CrossRef]

2006

2005

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005).
[CrossRef]

2004

W. Yunus and C. Sheng, “Photodegradation study of methylene blue (mb) trapped in poly (methyl methacrylate) (pmma) matrix,” Suranaree J. Sci. Technol. 11, 138–142 (2004).

B. Howell and M. G. Kuzyk, “Lasing action and photodegradation of disperse orange 11 dye in liquid solution,” Appl. Phys. Lett. 85, 1901–1903 (2004).
[CrossRef]

P. Kobrin, R. Fisher, and A. Gurrola, “Reversible photodegradation of organic light-emitting diodes,” Appl. Phys. Lett. 85, 2385–2387 (2004).
[CrossRef]

2002

A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
[CrossRef]

B. Howell and M. G. Kuzyk, “Amplified spontaneous emission and recoverable photodegradation in disperse-orange-11-doped-polymer,” J. Opt. Soc. Am. B 19, 1790–1793 (2002).
[CrossRef]

2001

2000

1999

1998

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

M. Fukushima, “Effects of dopants and polymer structures on electrical conductivity of organosilicon polymers,” Synth. Met. 94, 299–306 (1998).
[CrossRef]

G. D. Peng, Z. Xiong, and P. L. Chu, “Fluorescence decay and recovery in organic dye-doped polymer optical fibers,” J. Lightwave Technol. 16, 2365–2372 (1998).
[CrossRef]

1997

M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997).
[CrossRef]

1996

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996).
[CrossRef]

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996).
[CrossRef]

1995

B. Cumpston and K. Jensen, “Photo-oxidation of polymers used in electroluminescent devices,” Synth. Met. 73, 195–199 (1995).
[CrossRef]

W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).

1994

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

M. D. Rahn and T. A. King, “Lasers based on doped sol-gel composite glasses,” Proc. SPIE 2288, 382–391 (1994).
[CrossRef]

1993

H. O. Yadav, P. Raghavan, and T. Varadarajan, “Structural dependence on electrical properties of anthraquinone derivatives,” Synth. Met. 57, 5094–5099 (1993).
[CrossRef]

1992

M. N. Vijayashree, S. V. Subramanyam, and A. G. Samuelson, “A new organic conducting material derived from 1,4-diaminoanthraquinon,” Macromolecules 25, 2988–2990 (1992).
[CrossRef]

1991

J. Kochi, “Charge-transfer excitation of molecular complexes in organic and organometallic chemistry,” Pure Appl. Chem. 63, 255–264 (1991).
[CrossRef]

P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
[CrossRef]

1990

1984

S. L. Li and J. Guillet, “Photochemistry of ketone polymers. 17. photodegradation of an amorphous ethylenes–propylene copolymer,” Macrmolecules 17, 41–50 (1984).

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6g,” J. Phys. Chem. 88, 5956–5959 (1984).
[CrossRef]

M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. EI-19, 162–178 (1984).
[CrossRef]

1982

A. Albini, E. Fasani, and S. Pietra, “The photochemistry of azo-dyes. The wavelength-dependent photo-reduction of 4-diethylamino-4-nitroazobenzene,” J. Chem. Soc., Perkin Trans. 2, 1393–1395 (1982).

1972

Albini, A.

A. Albini, E. Fasani, and S. Pietra, “The photochemistry of azo-dyes. The wavelength-dependent photo-reduction of 4-diethylamino-4-nitroazobenzene,” J. Chem. Soc., Perkin Trans. 2, 1393–1395 (1982).

Anderson, B.

Anderson, B. R.

S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013).
[CrossRef]

B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Testing theories of self healing using photoconductivity as a probe of photodegradation and recovery,” Proc. SPIE 8519, 85190H (2012).
[CrossRef]

B. R. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self- healing of anthraquinone derivative dye doped polymers,” Proc. SPIE 8190, 81900N (2011).
[CrossRef]

S. K. Ramini, B. R. Anderson, and M. G. Kuzyk, “Recent progress in reversible photodegradation of disperse orange 11 when doped in PMMA,” Proc. SPIE 8190, 81900P (2011).
[CrossRef]

Annieta, P.

P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.

Avnir, D.

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6g,” J. Phys. Chem. 88, 5956–5959 (1984).
[CrossRef]

Bando, Y.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Barashkov, N.

Bazan, G.

M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997).
[CrossRef]

Beisinghoff, H.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996).
[CrossRef]

Boilot, J.-P.

Bowden, M.

P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
[CrossRef]

Brewer, C.

Brost, G. A.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Brun, A.

Callcott, T. A.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Calle, M.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

Canva, M.

A. Galvan-Gonzalez, G. I. Stegeman, A. K.-Y. Jen, X. Wu, M. Canva, A. C. Kowalczyk, X. Q. Zhang, H. S. Lackritz, S. Marder, S. Thayumanavan, and G. Levina, “Photostability of electro-optic polymers possessing chromophores with efficient amino donors and cyano-containing acceptors,” J. Opt. Soc. Am. B 18, 1846–1853 (2001).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, K. P. Chan, T. C. Kowalczyk, X. Q. Zhang, H. S. Lackritz, S. Marder, and S. Thayumanavan, “Systematic behavior of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K. P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, T. C. Kowalczyk, and H. S. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some disperse red 1-type polymers,” Opt. Lett. 24, 1741–1743 (1999).
[CrossRef]

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996).
[CrossRef]

Carlisle, J. A.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Carvalhaes, C.

C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005).
[CrossRef]

Carvalho, C.

C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005).
[CrossRef]

Castaneda, C.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Cerdan, L.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

Chan, K. P.

Chandross, E. A.

Chaput, F.

Chu, P. L.

Cook, P. R.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Costela, A.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

Cumpston, B.

B. Cumpston and K. Jensen, “Photo-oxidation of polymers used in electroluminescent devices,” Synth. Met. 73, 195–199 (1995).
[CrossRef]

de Abajo, J.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

DesAutels, L.

Dirk, C. W.

N. J. Westfall and C. W. Dirk, “The photochemistry of the self-healing chromophore disperse orange 11,” J. Phys. Org. Chem. 25, 704–712 (2012).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

Dixon, N.

P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
[CrossRef]

Dubois, A.

Dunn, B.

Durán-Sampedro, G.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

Ederer, D. L.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Eich, M.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996).
[CrossRef]

Elliker, P.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Embaye, N.

N. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129, 054504 (2008).
[CrossRef]

M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
[CrossRef]

Exarhos, G.

P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
[CrossRef]

Exarhos, G. J.

G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, Laser-Induced Damage in Optical Materials (SPIE, 1998).

Farahi, F.

K.-S. Kang, W. Sisk, M. Raja, and F. Farahi, “Field-enhanced photodegradation of pyrromethene dye films,” J. Photochem. Photobiol., A 121, 133–140 (1999).
[CrossRef]

W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).

Fasani, E.

A. Albini, E. Fasani, and S. Pietra, “The photochemistry of azo-dyes. The wavelength-dependent photo-reduction of 4-diethylamino-4-nitroazobenzene,” J. Chem. Soc., Perkin Trans. 2, 1393–1395 (1982).

Fellows, C.

C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005).
[CrossRef]

Fernández Loyola, C. H. OR.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Fetterman, H. R.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Fisher, R.

P. Kobrin, R. Fisher, and A. Gurrola, “Reversible photodegradation of organic light-emitting diodes,” Appl. Phys. Lett. 85, 2385–2387 (2004).
[CrossRef]

Flores Ramírez, N.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Flusche, B. M.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Fox, G.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Fukata, N.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Fukushima, M.

M. Fukushima, “Effects of dopants and polymer structures on electrical conductivity of organosilicon polymers,” Synth. Met. 94, 299–306 (1998).
[CrossRef]

Fuqua, P. D.

Galvan-Gonzalez, A.

García, B.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

García, R.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Garcia-Gaitan, B.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

García-Moreno, I.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

Gardiner, D.

P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
[CrossRef]

George, N.

A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
[CrossRef]

Ghebremichael, F.

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

Guenther, A. H.

G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, Laser-Induced Damage in Optical Materials (SPIE, 1998).

Guillet, J.

S. L. Li and J. Guillet, “Photochemistry of ketone polymers. 17. photodegradation of an amorphous ethylenes–propylene copolymer,” Macrmolecules 17, 41–50 (1984).

Gurrola, A.

P. Kobrin, R. Fisher, and A. Gurrola, “Reversible photodegradation of organic light-emitting diodes,” Appl. Phys. Lett. 85, 2385–2387 (2004).
[CrossRef]

Haas, F.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Hagler, T. W.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Heath, J.

Himpsel, F. J.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Howell, B.

B. Howell and M. G. Kuzyk, “Lasing action and photodegradation of disperse orange 11 dye in liquid solution,” Appl. Phys. Lett. 85, 1901–1903 (2004).
[CrossRef]

B. Howell and M. G. Kuzyk, “Amplified spontaneous emission and recoverable photodegradation in disperse-orange-11-doped-polymer,” J. Opt. Soc. Am. B 19, 1790–1793 (2002).
[CrossRef]

Hung, S. T.

S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013).
[CrossRef]

B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Testing theories of self healing using photoconductivity as a probe of photodegradation and recovery,” Proc. SPIE 8519, 85190H (2012).
[CrossRef]

Ieda, M.

M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. EI-19, 162–178 (1984).
[CrossRef]

Irimpan, L.

P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.

Jen, A. K.-Y.

Jensen, K.

B. Cumpston and K. Jensen, “Photo-oxidation of polymers used in electroluminescent devices,” Synth. Met. 73, 195–199 (1995).
[CrossRef]

Jia, J. J.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Jiang, Y.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Jimenez, I.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Joseph, L.

P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.

Juan-y-Seva, M.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

Kaminow, I. P.

Kang, K.-S.

K.-S. Kang, W. Sisk, M. Raja, and F. Farahi, “Field-enhanced photodegradation of pyrromethene dye films,” J. Photochem. Photobiol., A 121, 133–140 (1999).
[CrossRef]

W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).

Khan, M.

M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997).
[CrossRef]

King, T. A.

M. D. Rahn and T. A. King, “Lasers based on doped sol-gel composite glasses,” Proc. SPIE 2288, 382–391 (1994).
[CrossRef]

Knobbe, E. T.

Kobrin, P.

P. Kobrin, R. Fisher, and A. Gurrola, “Reversible photodegradation of organic light-emitting diodes,” Appl. Phys. Lett. 85, 2385–2387 (2004).
[CrossRef]

Kochi, J.

J. Kochi, “Charge-transfer excitation of molecular complexes in organic and organometallic chemistry,” Pure Appl. Chem. 63, 255–264 (1991).
[CrossRef]

Kowalczyk, A. C.

Kowalczyk, T. C.

Kozlowski, M. R.

G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, Laser-Induced Damage in Optical Materials (SPIE, 1998).

Kurian, A.

A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
[CrossRef]

Kuzyk, M. G.

S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013).
[CrossRef]

B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Testing theories of self healing using photoconductivity as a probe of photodegradation and recovery,” Proc. SPIE 8519, 85190H (2012).
[CrossRef]

S. K. Ramini and M. G. Kuzyk, “A self healing model based on polymer-mediated chromophore correlations,” J. Chem. Phys. 137, 054705 (2012).
[CrossRef]

B. R. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self- healing of anthraquinone derivative dye doped polymers,” Proc. SPIE 8190, 81900N (2011).
[CrossRef]

B. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self-healing in disperse orange 11 dye-doped pmma,” J. Opt. Soc. Am. B 28, 528–532 (2011).
[CrossRef]

S. K. Ramini, B. R. Anderson, and M. G. Kuzyk, “Recent progress in reversible photodegradation of disperse orange 11 when doped in PMMA,” Proc. SPIE 8190, 81900P (2011).
[CrossRef]

L. DesAutels, M. G. Kuzyk, and C. Brewer, “Femtosecond bulk transparent material processing and recovery,” Opt. Express 17, 18808–18819 (2009).
[CrossRef]

N. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129, 054504 (2008).
[CrossRef]

M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
[CrossRef]

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32, 958–960 (2007).
[CrossRef]

B. Howell and M. G. Kuzyk, “Lasing action and photodegradation of disperse orange 11 dye in liquid solution,” Appl. Phys. Lett. 85, 1901–1903 (2004).
[CrossRef]

B. Howell and M. G. Kuzyk, “Amplified spontaneous emission and recoverable photodegradation in disperse-orange-11-doped-polymer,” J. Opt. Soc. Am. B 19, 1790–1793 (2002).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

Lackritz, H. S.

Lee, H. W.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Levina, G.

Levy, D.

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6g,” J. Phys. Chem. 88, 5956–5959 (1984).
[CrossRef]

Li, S. L.

S. L. Li and J. Guillet, “Photochemistry of ketone polymers. 17. photodegradation of an amorphous ethylenes–propylene copolymer,” Macrmolecules 17, 41–50 (1984).

Luna-Bárcenas, G.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Marder, S.

McCulloch, I.

M. Mortazavi, H. Yoon, and I. McCulloch, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)35, 198 (1994).

McEwen, T. A.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

McKeon, B. F.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Mejia, I.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Michalak, R. J.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Mortazavi, M.

M. Mortazavi, H. Yoon, and I. McCulloch, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)35, 198 (1994).

Nampoori, V.

A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
[CrossRef]

P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.

Nash, F. D.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Nichter, J. E.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Nishida, F.

Ocampo, M. A.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Ortiz-Estrada, C.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Pakbaz, K.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Paul, B.

A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
[CrossRef]

Payson, P. M.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Peng, G. D.

Pietra, S.

A. Albini, E. Fasani, and S. Pietra, “The photochemistry of azo-dyes. The wavelength-dependent photo-reduction of 4-diethylamino-4-nitroazobenzene,” J. Chem. Soc., Perkin Trans. 2, 1393–1395 (1982).

Pirich, A. R.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Popovic, Z.

M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997).
[CrossRef]

Pryde, C. A.

Rabek, J. F.

J. F. Rabek, Polymer Photodegradation: Mechanisms and Experimental Methods (Springer, 1995).

Radhakrishnan, P.

P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.

Raghavan, P.

H. O. Yadav, P. Raghavan, and T. Varadarajan, “Structural dependence on electrical properties of anthraquinone derivatives,” Synth. Met. 57, 5094–5099 (1993).
[CrossRef]

Rahn, M. D.

M. D. Rahn and T. A. King, “Lasers based on doped sol-gel composite glasses,” Proc. SPIE 2288, 382–391 (1994).
[CrossRef]

Raja, M.

K.-S. Kang, W. Sisk, M. Raja, and F. Farahi, “Field-enhanced photodegradation of pyrromethene dye films,” J. Photochem. Photobiol., A 121, 133–140 (1999).
[CrossRef]

Raja, M. Y. A.

W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).

Ramini, S. K.

S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013).
[CrossRef]

S. K. Ramini and M. G. Kuzyk, “A self healing model based on polymer-mediated chromophore correlations,” J. Chem. Phys. 137, 054705 (2012).
[CrossRef]

B. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self-healing in disperse orange 11 dye-doped pmma,” J. Opt. Soc. Am. B 28, 528–532 (2011).
[CrossRef]

B. R. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self- healing of anthraquinone derivative dye doped polymers,” Proc. SPIE 8190, 81900N (2011).
[CrossRef]

S. K. Ramini, B. R. Anderson, and M. G. Kuzyk, “Recent progress in reversible photodegradation of disperse orange 11 when doped in PMMA,” Proc. SPIE 8190, 81900P (2011).
[CrossRef]

N. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129, 054504 (2008).
[CrossRef]

Reisfeld, R.

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6g,” J. Phys. Chem. 88, 5956–5959 (1984).
[CrossRef]

Renak, M.

M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997).
[CrossRef]

Rodríguez Melgarejo, F.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Samuelson, A. G.

M. N. Vijayashree, S. V. Subramanyam, and A. G. Samuelson, “A new organic conducting material derived from 1,4-diaminoanthraquinon,” Macromolecules 25, 2988–2990 (1992).
[CrossRef]

Sánchez Catalán, K.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Senkal, B.

F. Yakuphanoglu and B. Senkal, “Electrical conductivity, photoconductivity, and optical properties of poly(1,4-diaminoanthraquinone) organic semiconductor for optoelectronic applications,” Polym. Adv. Technol. 19, 1193–1198 (2008).
[CrossRef]

Sheng, C.

W. Yunus and C. Sheng, “Photodegradation study of methylene blue (mb) trapped in poly (methyl methacrylate) (pmma) matrix,” Suranaree J. Sci. Technol. 11, 138–142 (2004).

Shepherd, W. E. B.

W. E. B. Shepherd, “Aggregate formation and its effect on (opto)electronic properties of guest-host organic semiconductors,” Appl. Phys. Lett. 97, 163303 (2010).
[CrossRef]

Shuh, D. K.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Sisk, W.

N. Tanaka, N. Barashkov, J. Heath, and W. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45, 3846–3851 (2006).
[CrossRef]

K.-S. Kang, W. Sisk, M. Raja, and F. Farahi, “Field-enhanced photodegradation of pyrromethene dye films,” J. Photochem. Photobiol., A 121, 133–140 (1999).
[CrossRef]

Sisk, W. N.

W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).

Soileau, M. J.

G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, Laser-Induced Damage in Optical Materials (SPIE, 1998).

Son, D. I.

D. I. Son, “Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal Zno quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

Stegeman, G.

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

Stegeman, G. I.

Stulz, L. W.

Su, Y.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Subramanyam, S. V.

M. N. Vijayashree, S. V. Subramanyam, and A. G. Samuelson, “A new organic conducting material derived from 1,4-diaminoanthraquinon,” Macromolecules 25, 2988–2990 (1992).
[CrossRef]

Sukhomlinova, L.

Sutherland, D. G. J.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Szep, A. A.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Tanaka, N.

Tauber, U.

C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005).
[CrossRef]

Taylor, E. W.

M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
[CrossRef]

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Terminello, L. J.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Thayumanavan, S.

Tong, W. M.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Tsap, B.

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Tschudi, T.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996).
[CrossRef]

Turnbull, G. A.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

Twieg, R.

Twieg, R. J.

Vallabhan, C.

A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
[CrossRef]

Varadarajan, T.

H. O. Yadav, P. Raghavan, and T. Varadarajan, “Structural dependence on electrical properties of anthraquinone derivatives,” Synth. Met. 57, 5094–5099 (1993).
[CrossRef]

Vásquez García, S. R.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Vijayashree, M. N.

M. N. Vijayashree, S. V. Subramanyam, and A. G. Samuelson, “A new organic conducting material derived from 1,4-diaminoanthraquinon,” Macromolecules 25, 2988–2990 (1992).
[CrossRef]

Vydra, J.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996).
[CrossRef]

Wang, Z.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Westfall, N. J.

N. J. Westfall and C. W. Dirk, “The photochemistry of the self-healing chromophore disperse orange 11,” J. Phys. Org. Chem. 25, 704–712 (2012).
[CrossRef]

White, P.

P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
[CrossRef]

Williams, S. C.

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

Wu, X.

Wu, Z.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Xie, Y.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Xiong, Z.

Yadav, H. O.

H. O. Yadav, P. Raghavan, and T. Varadarajan, “Structural dependence on electrical properties of anthraquinone derivatives,” Synth. Met. 57, 5094–5099 (1993).
[CrossRef]

Yakuphanoglu, F.

F. Yakuphanoglu and B. Senkal, “Electrical conductivity, photoconductivity, and optical properties of poly(1,4-diaminoanthraquinone) organic semiconductor for optoelectronic applications,” Polym. Adv. Technol. 19, 1193–1198 (2008).
[CrossRef]

Yang, Y.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Yen, K.-H.

H.-W. Zan and K.-H. Yen, “High photoresponsivity of pentacene-based organic thin-film transistors with UV-treated pmma dielectrics,” Electrochem. Solid-State Lett. 11, H222–H225 (2008).
[CrossRef]

Yoon, H.

M. Mortazavi, H. Yoon, and I. McCulloch, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)35, 198 (1994).

Yunus, W.

W. Yunus and C. Sheng, “Photodegradation study of methylene blue (mb) trapped in poly (methyl methacrylate) (pmma) matrix,” Suranaree J. Sci. Technol. 11, 138–142 (2004).

Zan, H.-W.

H.-W. Zan and K.-H. Yen, “High photoresponsivity of pentacene-based organic thin-film transistors with UV-treated pmma dielectrics,” Electrochem. Solid-State Lett. 11, H222–H225 (2008).
[CrossRef]

Zavala, R.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Zhang, H.

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Zhang, Q.

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

Zhang, X. Q.

Zhe, Y.

M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
[CrossRef]

Zhou, J.

M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
[CrossRef]

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32, 958–960 (2007).
[CrossRef]

Zhu, Y.

Zimmerman, K.

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Howell and M. G. Kuzyk, “Lasing action and photodegradation of disperse orange 11 dye in liquid solution,” Appl. Phys. Lett. 85, 1901–1903 (2004).
[CrossRef]

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005).
[CrossRef]

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996).
[CrossRef]

D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996).
[CrossRef]

P. Kobrin, R. Fisher, and A. Gurrola, “Reversible photodegradation of organic light-emitting diodes,” Appl. Phys. Lett. 85, 2385–2387 (2004).
[CrossRef]

W. E. B. Shepherd, “Aggregate formation and its effect on (opto)electronic properties of guest-host organic semiconductors,” Appl. Phys. Lett. 97, 163303 (2010).
[CrossRef]

D. I. Son, “Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal Zno quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

Braz. J. Phys.

C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005).
[CrossRef]

Electrochem. Solid-State Lett.

H.-W. Zan and K.-H. Yen, “High photoresponsivity of pentacene-based organic thin-film transistors with UV-treated pmma dielectrics,” Electrochem. Solid-State Lett. 11, H222–H225 (2008).
[CrossRef]

IEEE Trans. Electr. Insul.

M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. EI-19, 162–178 (1984).
[CrossRef]

Int. J. Optoelectron.

W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).

J. Am. Chem. Soc.

M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997).
[CrossRef]

J. Appl. Phys.

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994).
[CrossRef]

J. Chem. Phys.

S. K. Ramini and M. G. Kuzyk, “A self healing model based on polymer-mediated chromophore correlations,” J. Chem. Phys. 137, 054705 (2012).
[CrossRef]

N. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129, 054504 (2008).
[CrossRef]

J. Chem. Soc., Perkin Trans.

A. Albini, E. Fasani, and S. Pietra, “The photochemistry of azo-dyes. The wavelength-dependent photo-reduction of 4-diethylamino-4-nitroazobenzene,” J. Chem. Soc., Perkin Trans. 2, 1393–1395 (1982).

J. Lightwave Technol.

J. Mater. Chem.

L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012).
[CrossRef]

J. Mater. Res.

P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol., A

K.-S. Kang, W. Sisk, M. Raja, and F. Farahi, “Field-enhanced photodegradation of pyrromethene dye films,” J. Photochem. Photobiol., A 121, 133–140 (1999).
[CrossRef]

J. Phys. Chem.

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6g,” J. Phys. Chem. 88, 5956–5959 (1984).
[CrossRef]

J. Phys. Org. Chem.

N. J. Westfall and C. W. Dirk, “The photochemistry of the self-healing chromophore disperse orange 11,” J. Phys. Org. Chem. 25, 704–712 (2012).
[CrossRef]

Laser Chem.

A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002).
[CrossRef]

Macrmolecules

S. L. Li and J. Guillet, “Photochemistry of ketone polymers. 17. photodegradation of an amorphous ethylenes–propylene copolymer,” Macrmolecules 17, 41–50 (1984).

Macromol. Symp.

B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009).
[CrossRef]

Macromolecules

M. N. Vijayashree, S. V. Subramanyam, and A. G. Samuelson, “A new organic conducting material derived from 1,4-diaminoanthraquinon,” Macromolecules 25, 2988–2990 (1992).
[CrossRef]

Nanotechnology

Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Polym. Adv. Technol.

F. Yakuphanoglu and B. Senkal, “Electrical conductivity, photoconductivity, and optical properties of poly(1,4-diaminoanthraquinone) organic semiconductor for optoelectronic applications,” Polym. Adv. Technol. 19, 1193–1198 (2008).
[CrossRef]

Polym. Chem.

S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013).
[CrossRef]

Proc. SPIE

B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Testing theories of self healing using photoconductivity as a probe of photodegradation and recovery,” Proc. SPIE 8519, 85190H (2012).
[CrossRef]

B. R. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self- healing of anthraquinone derivative dye doped polymers,” Proc. SPIE 8190, 81900N (2011).
[CrossRef]

M. D. Rahn and T. A. King, “Lasers based on doped sol-gel composite glasses,” Proc. SPIE 2288, 382–391 (1994).
[CrossRef]

M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007).
[CrossRef]

S. K. Ramini, B. R. Anderson, and M. G. Kuzyk, “Recent progress in reversible photodegradation of disperse orange 11 when doped in PMMA,” Proc. SPIE 8190, 81900P (2011).
[CrossRef]

Pure Appl. Chem.

J. Kochi, “Charge-transfer excitation of molecular complexes in organic and organometallic chemistry,” Pure Appl. Chem. 63, 255–264 (1991).
[CrossRef]

Suranaree J. Sci. Technol.

W. Yunus and C. Sheng, “Photodegradation study of methylene blue (mb) trapped in poly (methyl methacrylate) (pmma) matrix,” Suranaree J. Sci. Technol. 11, 138–142 (2004).

Synth. Met.

B. Cumpston and K. Jensen, “Photo-oxidation of polymers used in electroluminescent devices,” Synth. Met. 73, 195–199 (1995).
[CrossRef]

H. O. Yadav, P. Raghavan, and T. Varadarajan, “Structural dependence on electrical properties of anthraquinone derivatives,” Synth. Met. 57, 5094–5099 (1993).
[CrossRef]

M. Fukushima, “Effects of dopants and polymer structures on electrical conductivity of organosilicon polymers,” Synth. Met. 94, 299–306 (1998).
[CrossRef]

Other

J. Chilton and M. T. Goosey, eds., Special Polymers for Electronics & Optoelectronics (Chapman & Hall, 1995).

P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.

M. Mortazavi, H. Yoon, and I. McCulloch, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)35, 198 (1994).

J. F. Rabek, Polymer Photodegradation: Mechanisms and Experimental Methods (Springer, 1995).

G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, Laser-Induced Damage in Optical Materials (SPIE, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Image of a sample made of two crossed ITO substrates with dye-doped polymer pressed in between. Overlayed white lines mark the boundaries of the ITO strips.

Fig. 2.
Fig. 2.

Experiment: an ArKr laser burns the sample, a LED illuminates it, and the CCD detector images the burn. The sample is connected in series with a power supply and picoammeter that measures the current through the sample.

Fig. 3.
Fig. 3.

Dark current as a function of time after the field is applied for various field strengths for an 11.5g/l sample of DO11 in PMMA polymer.

Fig. 4.
Fig. 4.

Example of current relaxation after light exposure. The relaxation process is characterized by multiple time scales. Inset: current during light exposure follows a double exponential.

Fig. 5.
Fig. 5.

Measured zero-field photocurrent before and after electric field conditioning for one week.

Fig. 6.
Fig. 6.

Zero-field recovery rate distribution for a 7g/l sample before and after conditioning with an electric field. Conditioning leads to a narrower distribution.

Fig. 7.
Fig. 7.

Scaled damaged population as a function of time as measured with optical absorption imaging at the center of the burn (x=y=0) for various applied fields during photodegradation. Inset: self-healing at the same spot and applied field. The curves shown are fits to the data which are not shown for clarity.

Fig. 8.
Fig. 8.

Equilibrium scaled damaged population for the center of the beam (x=y=0). As the field strength is increased the degree of damage decreases regardless of polarity.

Fig. 9.
Fig. 9.

Average recovery fraction as a function of applied electric field. A negative electric field points in the opposite direction to the field applied during photodegradation.

Fig. 10.
Fig. 10.

Intensity-independent decay rate, α, as a function of applied electric field. A negative electric field points antiparallel to the pump Poynting vector.

Fig. 11.
Fig. 11.

Recovery rate, β, as a function of applied electric field. A negative electric field points in the opposite direction to the field applied during photodegradation.

Fig. 12.
Fig. 12.

After initially burning a sample in the presence of an applied voltage of ΔV=30V, the recovery rate and degree of recovery increases as the voltage is increased.

Fig. 13.
Fig. 13.

(a) Image of horizontal burn lines when 100 V is first applied (red line shows the location where the burn profile is measured). Two of the burn lines had recovered nearly 100%. (b) Image of burn lines after several days of 100 V conditioning. The two burn lines (marked by arrows), which had recovered to the background level, continued to recover leading to two dark lines. (c) The image line profile corresponding to the red line in (a). (d) The image profile corresponding to the red line in (b).

Fig. 14.
Fig. 14.

Absorption spectrum for an undamaged sample and for area where the DIM gives 100+% recovery. Note that the absorbance in the deep blue region is greater than in the clean sample.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n(x,y,t)=1ΔσLln[ΔT(x,y,t)],
n(x,y,t)=ΔσLn(x,y,t)
=ln[ΔT(x,y,t)].
n(x,y,t)=n0(1eγt),
n(x,y,t)=nIR+nReβt,
nf=nRnIR+nR,

Metrics