Abstract

The influence of an applied electric field on reversible photodegradation of disperse orange 11 doped into (poly)methyl-methacrylate (PMMA) is measured using digital imaging and conductivity measurements. Correlations between optical imaging, which measures photodegradation and recovery, and photoconductivity enables an association to be made between the damaged fragments and their contribution to current, thus establishing that damaged fragments are charged species, or polarizable. Hence, the decay and recovery process should be controllable with the applications of an electric field. Indeed, we find that the dye polymer system is highly sensitive to an applied electric field, which drastically affects the decay and recovery dynamics. We demonstrate accelerated recovery when one field polarity is applied during burning and the opposite polarity is applied during recovery. This work suggests that the damage threshold can be increased through electric field conditioning, and the results are qualitatively consistent with the domain model of Ramini. The observed behavior will provide useful input into better understanding the nature of the domains in the domain model, making it possible to design more robust materials using common polymers and molecular dopants.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment

Adriana Galvan-Gonzalez, Michael Canva, George I. Stegeman, Ludmila Sukhomlinova, Robert J. Twieg, Kwok Pong Chan, Tony C. Kowalczyk, and Hilary S. Lackritz
J. Opt. Soc. Am. B 17(12) 1992-2000 (2000)

Amplified spontaneous emission and recoverable photodegradation in polymer doped with Disperse Orange 11

Brent F. Howell and Mark G. Kuzyk
J. Opt. Soc. Am. B 19(8) 1790-1793 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription