Abstract

We describe a low-cost and efficient alexandrite (Cr:BeAl2O4) laser that is pumped by a high-brightness tapered diode laser (TDL). The tapered diode (TD) provides up to 1.1 W of output power and its wavelength can be fine-tuned to either 680.4 nm (R1 line) or 678.5 nm (R2 line) for efficient in-line pumping. Continuous-wave (cw) output powers of 200 mW, slope efficiencies as high as 38%, and a cw tuning range extending from 724 to 816 nm have been achieved. To the best of our knowledge, the cw power levels and slope efficiencies are the highest demonstrated so far from such a minimal complexity and low-cost system based on the alexandrite gain medium. Consequently, TDs operating in the red spectral region have the potential to become the standard pump sources for cw alexandrite lasers in the near future.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12, 3928–3933 (2004).
    [CrossRef]
  2. U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “Low-cost, broadly tunable (375–433  nm & 746–887  nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51, 8440–8448 (2012).
    [CrossRef]
  3. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [CrossRef]
  4. Y. Ishida and K. Naganuma, “Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser,” Opt. Lett. 21, 51–53 (1996).
    [CrossRef]
  5. D. L. Sipes, “Highly efficient neodymium–yttrium aluminum garnet laser end pumped by a semiconductor-laser array,” Appl. Phys. Lett. 47, 74–76 (1985).
    [CrossRef]
  6. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2  μm,” Opt. Lett. 36, 948–950 (2011).
    [CrossRef]
  7. D. Li, U. Demirbas, A. Benedick, A. Sennaroglu, J. G. Fujimoto, and F. X. Kärtner, “Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers,” Opt. Express 20, 23422–23435 (2012).
    [CrossRef]
  8. L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (1987), Vol. 14, pp. 296–298.
  9. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5  fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001).
    [CrossRef]
  10. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  11. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009).
    [CrossRef]
  12. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
    [CrossRef]
  13. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20, 13677–13683 (2012).
    [CrossRef]
  14. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36, 304–306 (2011).
    [CrossRef]
  15. P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20, 20629–20634 (2012).
    [CrossRef]
  16. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K.-H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20  fs pulses,” Opt. Express 19, 12156–12163 (2011).
    [CrossRef]
  17. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
    [CrossRef]
  18. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
    [CrossRef]
  19. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
    [CrossRef]
  20. Z. Chen and G. Zhang, “Free-running emerald laser pumped by laser diode,” Chin. Opt. Lett. 4, 649–651 (2006).
  21. S. T. Lai, “Highly efficient emerald laser,” J. Opt. Soc. Am. B 4, 1286–1290 (1987).
    [CrossRef]
  22. J. C. Walling, “Tunable cw alexandrite lasers,” J. Opt. Soc. Am. 69, 1436 (1979).
  23. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4, 182–183 (1979).
    [CrossRef]
  24. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
    [CrossRef]
  25. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
    [CrossRef]
  26. O. Svelto, Principles of Lasers (Plenum, 1989).
  27. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef]
  28. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [CrossRef]
  29. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050  nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [CrossRef]
  30. S. Sakadzic, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16, 20848–20863 (2008).
    [CrossRef]
  31. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F. X. Kärtner, ed., Vol. 95 of Topics in Applied Physics (Springer-Verlag, 2004), pp. 3–73.
  32. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
    [CrossRef]
  33. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of alexandrite laser at elevated temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper  CL3.
  34. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153–164 (2007).
    [CrossRef]
  35. A. Sanchez, R. E. Fahey, A. J. Strauss, and R. L. Aggarwal, “Room-temperature continuous-wave operation of a Ti:Al2O3 laser,” Opt. Lett. 11, 363–364 (1986).
    [CrossRef]
  36. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
    [CrossRef]
  37. J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 40, 6638–6645 (2001).
    [CrossRef]
  38. M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
    [CrossRef]
  39. L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453–502 (1993).
    [CrossRef]
  40. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
    [CrossRef]
  41. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
    [CrossRef]
  42. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  43. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  44. M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.
  45. J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable cw alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
    [CrossRef]
  46. H. Samelson and D. J. Harter, “High-pressure mercury arc lamp excited cw alexandrite lasers,” in Conference on Lasers and Electro-Optics, Anaheim, California, June19–22 1984 (Optical Society of America, 1984).
  47. S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 56642–56644 (1984).
  48. J. W. Kuper and D. C. Brown, “Green pumped alexandrite lasers,” Proc. SPIE 5707, 265–270 (2005).
    [CrossRef]
  49. J. W. Kuper and D. C. Brown, “High efficiency CW green pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
    [CrossRef]
  50. M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
    [CrossRef]
  51. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
    [CrossRef]
  52. X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper  CMAA5.
  53. M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe, Munich, May12–16, 2013.
  54. U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011).
    [CrossRef]
  55. B. Sumpf, P. Adamiec, M. Zorn, H. Wenzel, and G. Erbert, “Nearly diffraction limited tapered lasers at 675  nm with 1  W output power and conversion efficiencies above 30%,” IEEE Photon. Technol. Lett. 23, 266–268 (2011).
    [CrossRef]
  56. E. Beyatlı, A. Sennaroglu, and U. Demirbas, “Self-Q-switched Cr:LiCAF laser,” J. Opt. Soc. Am. B 30, 914–921 (2013).
    [CrossRef]
  57. B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
    [CrossRef]
  58. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
    [CrossRef]
  59. I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388 (1968).
    [CrossRef]
  60. R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
    [CrossRef]
  61. M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
    [CrossRef]
  62. A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE-4, 692 (1968).
    [CrossRef]
  63. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
    [CrossRef]
  64. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
    [CrossRef]
  65. U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B 29, 1894–1903 (2012).
    [CrossRef]
  66. K. Torizuka, M. Yamashita, and T. Yabiku, “Continuous-wave alexandrite laser-pumped by a direct-current mercury arc lamp,” Appl. Opt. 32, 7394–7398 (1993).
    [CrossRef]

2013 (2)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[CrossRef]

E. Beyatlı, A. Sennaroglu, and U. Demirbas, “Self-Q-switched Cr:LiCAF laser,” J. Opt. Soc. Am. B 30, 914–921 (2013).
[CrossRef]

2012 (5)

2011 (5)

2009 (2)

2008 (1)

2007 (1)

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153–164 (2007).
[CrossRef]

2006 (2)

Z. Chen and G. Zhang, “Free-running emerald laser pumped by laser diode,” Chin. Opt. Lett. 4, 649–651 (2006).

J. W. Kuper and D. C. Brown, “High efficiency CW green pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[CrossRef]

2005 (1)

J. W. Kuper and D. C. Brown, “Green pumped alexandrite lasers,” Proc. SPIE 5707, 265–270 (2005).
[CrossRef]

2004 (1)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

2001 (2)

1999 (1)

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

1998 (2)

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

1996 (3)

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

1993 (3)

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453–502 (1993).
[CrossRef]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[CrossRef]

K. Torizuka, M. Yamashita, and T. Yabiku, “Continuous-wave alexandrite laser-pumped by a direct-current mercury arc lamp,” Appl. Opt. 32, 7394–7398 (1993).
[CrossRef]

1992 (2)

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

1989 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

1987 (1)

1986 (2)

1985 (2)

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

D. L. Sipes, “Highly efficient neodymium–yttrium aluminum garnet laser end pumped by a semiconductor-laser array,” Appl. Phys. Lett. 47, 74–76 (1985).
[CrossRef]

1984 (1)

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 56642–56644 (1984).

1982 (1)

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[CrossRef]

1980 (2)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable cw alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

1979 (2)

1975 (1)

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

1968 (4)

I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388 (1968).
[CrossRef]

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE-4, 692 (1968).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Abramovich, D.

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

Adamiec, P.

B. Sumpf, P. Adamiec, M. Zorn, H. Wenzel, and G. Erbert, “Nearly diffraction limited tapered lasers at 675  nm with 1  W output power and conversion efficiencies above 30%,” IEEE Photon. Technol. Lett. 23, 266–268 (2011).
[CrossRef]

Aggarwal, R. L.

Andersen, P. E.

Angelow, G.

Aschoff, H. E.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of alexandrite laser at elevated temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper  CL3.

Atherton, L. J.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453–502 (1993).
[CrossRef]

Backus, S.

Balembois, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153–164 (2007).
[CrossRef]

Bass, M.

Benedick, A.

Benmair, R. M. J.

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

Beyatli, E.

Birge, J. R.

Birnbaum, M.

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

Boas, D. A.

Brandle, C. D.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453–502 (1993).
[CrossRef]

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Braun, L. O.

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

Brown, C. T. A.

Brown, D. C.

J. W. Kuper and D. C. Brown, “High efficiency CW green pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[CrossRef]

J. W. Kuper and D. C. Brown, “Green pumped alexandrite lasers,” Proc. SPIE 5707, 265–270 (2005).
[CrossRef]

Burns, D.

Caird, J. A.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

Chai, B. H. T.

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

Chase, L. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Chen, Z.

Chin, T.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of alexandrite laser at elevated temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper  CL3.

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Collins, R. J.

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

Damzen, M. J.

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe, Munich, May12–16, 2013.

Dean, D. R.

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

Demirbas, U.

E. Beyatlı, A. Sennaroglu, and U. Demirbas, “Self-Q-switched Cr:LiCAF laser,” J. Opt. Soc. Am. B 30, 914–921 (2013).
[CrossRef]

U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B 29, 1894–1903 (2012).
[CrossRef]

U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “Low-cost, broadly tunable (375–433  nm & 746–887  nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51, 8440–8448 (2012).
[CrossRef]

D. Li, U. Demirbas, A. Benedick, A. Sennaroglu, J. G. Fujimoto, and F. X. Kärtner, “Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers,” Opt. Express 20, 23422–23435 (2012).
[CrossRef]

U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011).
[CrossRef]

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
[CrossRef]

S. Sakadzic, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16, 20848–20863 (2008).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

DeShazer, L. G.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (1987), Vol. 14, pp. 296–298.

Druon, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153–164 (2007).
[CrossRef]

Durfee, C.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[CrossRef]

Durfee, C. G.

Eggert, S.

Eichenholz, J. M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Ell, R.

Erbert, G.

Erickson, L. E.

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE-4, 692 (1968).
[CrossRef]

Fahey, R. E.

Fincher, C. L.

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Freund, I.

I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388 (1968).
[CrossRef]

Frukacz, Z.

Fuhrberg, P.

Fujimoto, J. G.

Garlick, J.

Gately, B. M.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Gausmann, S.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Georges, P.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153–164 (2007).
[CrossRef]

Giesen, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[CrossRef]

Harter, D. J.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

H. Samelson and D. J. Harter, “High-pressure mercury arc lamp excited cw alexandrite lasers,” in Conference on Lasers and Electro-Optics, Anaheim, California, June19–22 1984 (Optical Society of America, 1984).

Hartung, A.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Hasler, K.-H.

Heller, D. F.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper  CMAA5.

Hengesbach, S.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Hill, S.

Hirth, A.

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

Hoeffner, J.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Huber, G.

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Ippen, E. P.

Ishida, Y.

Jabczynski, J. K.

Jensen, O. B.

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef]

Jungbluth, B.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Kangas, K. W.

L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (1987), Vol. 14, pp. 296–298.

Kapteyn, H.

Kartner, F. X.

Kärtner, F. X.

Kemp, A. J.

Kirchner, M.

Klimm, D.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Kolodziejski, L. A.

Koopmann, P.

Krasinski, J. S.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Krupkin, V.

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

Kuper, J. W.

J. W. Kuper and D. C. Brown, “High efficiency CW green pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[CrossRef]

J. W. Kuper and D. C. Brown, “Green pumped alexandrite lasers,” Proc. SPIE 5707, 265–270 (2005).
[CrossRef]

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of alexandrite laser at elevated temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper  CL3.

Kway, W. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

Lagatsky, A. A.

Lai, S. T.

S. T. Lai, “Highly efficient emerald laser,” J. Opt. Soc. Am. B 4, 1286–1290 (1987).
[CrossRef]

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 56642–56644 (1984).

Lamrini, S.

Lando, M.

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

Le, T.

Leitenstorfer, A.

Li, D.

Maclean, A. J.

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Marrakchi, A.

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper  CMAA5.

Mempel, T. R.

Mierczyk, Z.

Minassian, A.

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe, Munich, May12–16, 2013.

Moore, A.

Morgner, U.

Morris, R. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable cw alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef]

Moulton, P. F.

Müller, A.

Munk, A.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Murnane, M.

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[CrossRef]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Naganuma, K.

Nella, J.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

O’Dell, E. W.

Odell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Payne, S. A.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453–502 (1993).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Peng, X.

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper  CMAA5.

Pete, J. A.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

Petermann, K.

Petersen, P. M.

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable cw alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef]

Petrich, G. S.

Richardson, M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Roth, P. W.

Ruvinskaya, S.

Sakadzic, S.

Samelson, H.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

H. Samelson and D. J. Harter, “High-pressure mercury arc lamp excited cw alexandrite lasers,” in Conference on Lasers and Electro-Optics, Anaheim, California, June19–22 1984 (Optical Society of America, 1984).

Sanchez, A.

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[CrossRef]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Scheuer, V.

Schmalz, M.

Scholle, K.

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[CrossRef]

Shand, M. L.

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 56642–56644 (1984).

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[CrossRef]

Shea, K.

Shimony, Y.

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

Sibbett, W.

Sipes, D. L.

D. L. Sipes, “Highly efficient neodymium–yttrium aluminum garnet laser end pumped by a semiconductor-laser array,” Appl. Phys. Lett. 47, 74–76 (1985).
[CrossRef]

Smith, L. K.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Sorokin, E.

E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F. X. Kärtner, ed., Vol. 95 of Topics in Applied Physics (Springer-Verlag, 2004), pp. 3–73.

Squier, J.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[CrossRef]

Squier, J. A.

Srotkamp, M.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Stalder, M.

Stingl, A.

Storz, T.

Strauss, A. J.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Sumpf, B.

Svelto, O.

O. Svelto, Principles of Lasers (Plenum, 1989).

Szabo, A.

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE-4, 692 (1968).
[CrossRef]

Taft, G.

Thomas, G. M.

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe, Munich, May12–16, 2013.

Torizuka, K.

Traub, M.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Tschudi, T.

Uecker, R.

Unterhuber, A.

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Walling, J. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable cw alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, “Tunable cw alexandrite lasers,” J. Opt. Soc. Am. 69, 1436 (1979).

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4, 182–183 (1979).
[CrossRef]

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper  CMAA5.

Wang, J.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050  nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Weber, B. C.

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

Wenzel, H.

B. Sumpf, P. Adamiec, M. Zorn, H. Wenzel, and G. Erbert, “Nearly diffraction limited tapered lasers at 675  nm with 1  W output power and conversion efficiencies above 30%,” IEEE Photon. Technol. Lett. 23, 266–268 (2011).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

Witte, U.

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Xu, C.

Yabiku, T.

Yamashita, M.

Yogev, A.

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

Young, M. D.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[CrossRef]

Zendzian, W.

Zhang, G.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

Zorn, M.

B. Sumpf, P. Adamiec, M. Zorn, H. Wenzel, and G. Erbert, “Nearly diffraction limited tapered lasers at 675  nm with 1  W output power and conversion efficiencies above 30%,” IEEE Photon. Technol. Lett. 23, 266–268 (2011).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453–502 (1993).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Appl. Phys. Lett. (5)

D. L. Sipes, “Highly efficient neodymium–yttrium aluminum garnet laser end pumped by a semiconductor-laser array,” Appl. Phys. Lett. 47, 74–76 (1985).
[CrossRef]

I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388 (1968).
[CrossRef]

R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968).
[CrossRef]

M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968).
[CrossRef]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

C. R. Phys. (1)

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153–164 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (9)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable cw alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[CrossRef]

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE-4, 692 (1968).
[CrossRef]

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Sumpf, P. Adamiec, M. Zorn, H. Wenzel, and G. Erbert, “Nearly diffraction limited tapered lasers at 675  nm with 1  W output power and conversion efficiencies above 30%,” IEEE Photon. Technol. Lett. 23, 266–268 (2011).
[CrossRef]

J. Appl. Phys. (2)

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 56642–56644 (1984).

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

J. Microsc. (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[CrossRef]

J. Opt. Soc. Am. (1)

J. C. Walling, “Tunable cw alexandrite lasers,” J. Opt. Soc. Am. 69, 1436 (1979).

J. Opt. Soc. Am. B (6)

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Opt. Commun. (3)

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996).
[CrossRef]

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998).
[CrossRef]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[CrossRef]

Opt. Express (8)

S. Sakadzic, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16, 20848–20863 (2008).
[CrossRef]

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
[CrossRef]

C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20, 13677–13683 (2012).
[CrossRef]

P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20, 20629–20634 (2012).
[CrossRef]

A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K.-H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20  fs pulses,” Opt. Express 19, 12156–12163 (2011).
[CrossRef]

D. Li, U. Demirbas, A. Benedick, A. Sennaroglu, J. G. Fujimoto, and F. X. Kärtner, “Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers,” Opt. Express 20, 23422–23435 (2012).
[CrossRef]

A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12, 3928–3933 (2004).
[CrossRef]

U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011).
[CrossRef]

Opt. Lett. (7)

Opt. Mater. (1)

M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[CrossRef]

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Proc. SPIE (2)

J. W. Kuper and D. C. Brown, “Green pumped alexandrite lasers,” Proc. SPIE 5707, 265–270 (2005).
[CrossRef]

J. W. Kuper and D. C. Brown, “High efficiency CW green pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Other (9)

O. Svelto, Principles of Lasers (Plenum, 1989).

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of alexandrite laser at elevated temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper  CL3.

E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F. X. Kärtner, ed., Vol. 95 of Topics in Applied Physics (Springer-Verlag, 2004), pp. 3–73.

L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (1987), Vol. 14, pp. 296–298.

H. Samelson and D. J. Harter, “High-pressure mercury arc lamp excited cw alexandrite lasers,” in Conference on Lasers and Electro-Optics, Anaheim, California, June19–22 1984 (Optical Society of America, 1984).

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper  CMAA5.

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe, Munich, May12–16, 2013.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Simplified energy level diagram for the alexandrite gain medium. Lasing occurs between the vibronically broadened T42 and A42 levels. (b) Measured variation of the absorption coefficient as a function of wavelength for the transition from the A42 ground level to the doublet of the E2 level for the Eb axis (in absorption coefficient scale).

Fig. 2.
Fig. 2.

(a) Measured variation of optical output power with input current for the TDL at diode holder temperatures of 15°C, 20°C, and 25°C. Corresponding voltage values of the TD for 25°C operation are also shown. (b) Measured optical spectra of the TD at 2 A diode current and at the diode holder temperatures of 15°C, 20°C, and 25°C. By adjusting diode current and temperature, it is possible to tune the central wavelength of emission to the absorption peaks at 678.5 and 680.4 nm.

Fig. 3.
Fig. 3.

(a) Beam waist, (b) far-field, and (c) near-field profiles for the slow axis of the TDL measured at 1 W of output power and at a cooling temperature of 15°C.

Fig. 4.
Fig. 4.

Schematic of the cw alexandrite oscillator pumped by a TDL (TD). M1, M2, curved pump mirrors with a ROC of 75 mm; OC, output coupler; f1, collecting and collimating aspheric lens; fz, cylindrical collimating lens (matches the divergence in both axes); f2, focusing lens; HWP, half-wave plate; PBS, polarizing beam splitter cube.

Fig. 5.
Fig. 5.

Measured cw output power of the TD pumped alexandrite laser as a function of the absorbed pump power at various levels of output coupling between 0.1% and 2.5%. The laser was pumped at the 678.4 nm (R2) line and the crystal absorbed 73% of the incident pump power. The data were taken without an intracavity slit and the laser output was slightly multimode.

Fig. 6.
Fig. 6.

Measured variation of lasing threshold and maximum obtainable output power with the output coupler transmission. Using Findlay–Clay analysis, the round-trip passive cavity loss (L) was estimated to be (0.4±0.1)%.

Fig. 7.
Fig. 7.

Measured position dependence of the spot size (1/e2) function from the alexandrite laser near the focus of a 6 cm lens in the z and y axes. Least-squares fitting to the experimental data gave an M2 value of 1.25 and 4.5 for the horizontal and vertical axes, respectively.

Fig. 8.
Fig. 8.

Continuous-wave output power versus absorbed pump power for the TD pumped alexandrite laser taken using a 0.5% output coupler and the intracavity slit. The laser is pumped at the 678.5 nm (R2) line and the crystal absorbed 73% of the incident pump power. The laser output was single mode (inset figure shows the measured beam profile).

Fig. 9.
Fig. 9.

Measured variation of the inverse of the slope efficiency as a function of the inverse of the output coupling. Using Caird analysis, the round-trip passive cavity loss (L) and the intrinsic slope efficiency (η0) were determined to be (0.3±0.1)% and (63±5)%, respectively. Note that some of the experimental points were excluded in the analysis (empty rectangles).

Fig. 10.
Fig. 10.

Continuous-wave tuning curve of the alexandrite laser taken with the 0.5% output coupler, at an absorbed pump power of 670 mW. The laser could be tuned smoothly from 725 to 810 nm. The measured variation of lasing threshold with wavelength and room-temperature emission spectrum (Eb) of the alexandrite gain medium are also shown.

Fig. 11.
Fig. 11.

Measured cw output power as a function of the absorbed pump power for the TD-pumped alexandrite laser taken at 0.25%, 0.5%, and 1.2% output coupling. The laser is pumped at the 680.5 nm (R1) line and the crystal absorbed 95% of the incident pump power. The data were taken without an intracavity slit and the laser output was slightly multimode.

Tables (2)

Tables Icon

Table 1. Comparison of the Spectroscopic and Laser Parameters of the Gain Media Ti:sapphire, Cr:LiSAF, and Alexandrite

Tables Icon

Table 2. Summary of Results from Literature for cw Alexandrite Lasersa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pth=π(wp2+wc2)hνp4(σeσESA)τfηp(2Ag+T+L).
η=[(hvlhvp)ηp(σeσESAσe)]TT+L=η0TT+L,

Metrics