Abstract

An alternative voltage-controlled scheme is proposed for the generation of an N-qubit W state with distant self-assembled semiconductor quantum dot molecules (QDMs) via adiabatic-varying tunnel coupling. The N semiconductor QDMs are trapped in N spatially separated cavities coupled with N1 fibers. The present scheme takes full advantage of adiabatic passage and the exceptional features of semiconductor QDMs. The decoherence caused by the excited state spontaneous emission and the fiber loss was efficiently suppressed. In addition, our calculations show that the present scheme is robust against the deviation of the parameters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [CrossRef]
  2. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
    [CrossRef]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  5. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  6. A. Barenco, D. Deutsch, and A. Ekert, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
    [CrossRef]
  7. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
    [CrossRef]
  8. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
    [CrossRef]
  9. T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002).
    [CrossRef]
  10. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
    [CrossRef]
  11. P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002).
    [CrossRef]
  12. S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
    [CrossRef]
  13. L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
    [CrossRef]
  14. X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009).
    [CrossRef]
  15. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004).
    [CrossRef]
  16. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004).
    [CrossRef]
  17. H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308 (2004).
    [CrossRef]
  18. G. X. Li, “Generation of pure multipartite entangled vibrational states for ions trapped in a cavity,” Phys. Rev. A 74, 055801 (2006).
    [CrossRef]
  19. G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
    [CrossRef]
  20. Z. J. Deng, K. L. Gao, and M. Feng, “Generation of N-qubit W states with rf SQUID qubits by adiabatic passage,” Phys. Rev. A 74, 064303 (2006).
    [CrossRef]
  21. S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B 7, 139–141 (2005).
    [CrossRef]
  22. C. E. Creffield and G. Platero, “ac-driven localization in a two-electron quantum dot molecule,” Phys. Rev. B 65, 113304 (2002).
    [CrossRef]
  23. J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
    [CrossRef]
  24. F. Mattinson, M. Kira, and S. Stenholm, “Adiabatic transfer between cavity modes,” J. Mod. Opt. 48, 889–903 (2001).
  25. E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
    [CrossRef]
  26. A. V. Tsukanov, “Entanglement and quantum-state engineering in the optically driven two-electron double-dot structure,” Phys. Rev. A 72, 022344 (2005).
    [CrossRef]
  27. X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011).
    [CrossRef]
  28. M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999).
    [CrossRef]
  29. J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
    [CrossRef]
  30. P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54(5), 46–52 (2001).
    [CrossRef]
  31. G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
    [CrossRef]
  32. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [CrossRef]
  33. J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
    [CrossRef]
  34. Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).
    [CrossRef]
  35. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
    [CrossRef]
  36. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [CrossRef]
  37. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
    [CrossRef]
  38. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
    [CrossRef]
  39. X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009).
    [CrossRef]
  40. T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
    [CrossRef]
  41. P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
    [CrossRef]
  42. A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62, 1568–1571 (2001).
    [CrossRef]
  43. H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010).
    [CrossRef]
  44. F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
    [CrossRef]
  45. T. Takagahara, “Theory of exciton doublet structures and polarization relaxation in single quantum dots,” Phys. Rev. B 62, 16840–16855 (2000).
    [CrossRef]
  46. H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010).
    [CrossRef]

2011

X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011).
[CrossRef]

2010

H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010).
[CrossRef]

H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010).
[CrossRef]

2009

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009).
[CrossRef]

J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009).
[CrossRef]

2007

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

2006

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

G. X. Li, “Generation of pure multipartite entangled vibrational states for ions trapped in a cavity,” Phys. Rev. A 74, 055801 (2006).
[CrossRef]

Z. J. Deng, K. L. Gao, and M. Feng, “Generation of N-qubit W states with rf SQUID qubits by adiabatic passage,” Phys. Rev. A 74, 064303 (2006).
[CrossRef]

2005

S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B 7, 139–141 (2005).
[CrossRef]

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

A. V. Tsukanov, “Entanglement and quantum-state engineering in the optically driven two-electron double-dot structure,” Phys. Rev. A 72, 022344 (2005).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

2004

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004).
[CrossRef]

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004).
[CrossRef]

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308 (2004).
[CrossRef]

2003

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).
[CrossRef]

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

2002

C. E. Creffield and G. Platero, “ac-driven localization in a two-electron quantum dot molecule,” Phys. Rev. B 65, 113304 (2002).
[CrossRef]

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002).
[CrossRef]

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002).
[CrossRef]

2001

F. Mattinson, M. Kira, and S. Stenholm, “Adiabatic transfer between cavity modes,” J. Mod. Opt. 48, 889–903 (2001).

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54(5), 46–52 (2001).
[CrossRef]

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62, 1568–1571 (2001).
[CrossRef]

2000

T. Takagahara, “Theory of exciton doublet structures and polarization relaxation in single quantum dots,” Phys. Rev. B 62, 16840–16855 (2000).
[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[CrossRef]

1999

M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999).
[CrossRef]

1997

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[CrossRef]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[CrossRef]

1995

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

A. Barenco, D. Deutsch, and A. Ekert, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[CrossRef]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

1990

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

1935

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Alcalde, A. M.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010).
[CrossRef]

Andersson, E.

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

Barenco, A.

A. Barenco, D. Deutsch, and A. Ekert, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[CrossRef]

Beirne, G. J.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Berry, M. J.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

Borges, H. S.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010).
[CrossRef]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

Bourennane, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Calarco, T.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Campman, K.

M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999).
[CrossRef]

Campman, K. L.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

Chen, L. B.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Chen, P.

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cirac, J. I.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[CrossRef]

Creffield, C. E.

C. E. Creffield and G. Platero, “ac-driven localization in a two-electron quantum dot molecule,” Phys. Rev. B 65, 113304 (2002).
[CrossRef]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Cui, N.

H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010).
[CrossRef]

Datta, A.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Deng, L.

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004).
[CrossRef]

Deng, Z. J.

Z. J. Deng, K. L. Gao, and M. Feng, “Generation of N-qubit W states with rf SQUID qubits by adiabatic passage,” Phys. Rev. A 74, 064303 (2006).
[CrossRef]

Deutsch, D.

A. Barenco, D. Deutsch, and A. Ekert, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[CrossRef]

Du, Q. H.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Dür, W.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[CrossRef]

Eibl, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Ekert, A.

A. Barenco, D. Deutsch, and A. Ekert, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Fedichev, P.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Feng, M.

Z. J. Deng, K. L. Gao, and M. Feng, “Generation of N-qubit W states with rf SQUID qubits by adiabatic passage,” Phys. Rev. A 74, 064303 (2006).
[CrossRef]

Gao, K. L.

Z. J. Deng, K. L. Gao, and M. Feng, “Generation of N-qubit W states with rf SQUID qubits by adiabatic passage,” Phys. Rev. A 74, 064303 (2006).
[CrossRef]

Gong, S.-Q.

H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010).
[CrossRef]

Gossard, A. C.

M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999).
[CrossRef]

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

Govorov, A. O.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

Greenberger, D. M.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[CrossRef]

Guo, G. C.

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

Hagley, E. W.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004).
[CrossRef]

Hao, X. Y.

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009).
[CrossRef]

Hermannstädter, C.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

Horne, M. A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Imamoglu, A.

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54(5), 46–52 (2001).
[CrossRef]

Imoto, N.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Kiesel, N.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Kira, M.

F. Mattinson, M. Kira, and S. Stenholm, “Adiabatic transfer between cavity modes,” J. Mod. Opt. 48, 889–903 (2001).

Kis, Z.

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Koashi, M.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002).
[CrossRef]

Kobayashi, T.

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308 (2004).
[CrossRef]

Kuroda, T.

A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62, 1568–1571 (2001).
[CrossRef]

Kurtsiefer, C.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Larson, J.

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

Li, F. L.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

Li, G. X.

G. X. Li, “Generation of pure multipartite entangled vibrational states for ions trapped in a cavity,” Phys. Rev. A 74, 055801 (2006).
[CrossRef]

Li, J.

J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Li, Y.

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308 (2004).
[CrossRef]

Lin, G. W.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Lin, X. M.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Liu, J. B.

Lorke, A.

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54(5), 46–52 (2001).
[CrossRef]

Lü, X. Y.

X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011).
[CrossRef]

J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009).
[CrossRef]

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009).
[CrossRef]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

Mar, D. J.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

Marcus, C. M.

M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999).
[CrossRef]

Mase, K.

A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62, 1568–1571 (2001).
[CrossRef]

Mattinson, F.

F. Mattinson, M. Kira, and S. Stenholm, “Adiabatic transfer between cavity modes,” J. Mod. Opt. 48, 889–903 (2001).

Michler, P.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

Mikami, H.

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308 (2004).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Niu, Y.-P.

H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010).
[CrossRef]

Paspalakis, E.

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Payne, M. G.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004).
[CrossRef]

Pazy, E.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Petroff, P. M.

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54(5), 46–52 (2001).
[CrossRef]

Piermarocchi, C.

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

Platero, G.

C. E. Creffield and G. Platero, “ac-driven localization in a two-electron quantum dot molecule,” Phys. Rev. B 65, 113304 (2002).
[CrossRef]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Rastelli, A.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Sanz, L.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010).
[CrossRef]

Schmidt, O. G.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Sham, L. J.

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

Shimony, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Si, L.

J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Si, L. G.

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009).
[CrossRef]

Song, P. J.

Stenholm, S.

F. Mattinson, M. Kira, and S. Stenholm, “Adiabatic transfer between cavity modes,” J. Mod. Opt. 48, 889–903 (2001).

Switkes, M.

M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999).
[CrossRef]

Tackeuchi, A.

A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62, 1568–1571 (2001).
[CrossRef]

Takagahara, T.

T. Takagahara, “Theory of exciton doublet structures and polarization relaxation in single quantum dots,” Phys. Rev. B 62, 16840–16855 (2000).
[CrossRef]

Tamaki, K.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002).
[CrossRef]

Terzis, A. F.

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Tsukanov, A. V.

A. V. Tsukanov, “Entanglement and quantum-state engineering in the optically driven two-electron double-dot structure,” Phys. Rev. A 72, 022344 (2005).
[CrossRef]

Ulloa, S. E.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

Vidal, G.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[CrossRef]

Villas-Bôas, J. M.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010).
[CrossRef]

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

Voutsinas, E.

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Wang, L.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

Waugh, F. R.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

Weinfurter, H.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Westervelt, R. M.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wu, J.

X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011).
[CrossRef]

Wu, Y.

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004).
[CrossRef]

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).
[CrossRef]

Xie, X. C.

P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002).
[CrossRef]

Xue, Q. K.

P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002).
[CrossRef]

Yamamoto, T.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002).
[CrossRef]

Yang, X.

J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003).
[CrossRef]

Yang, X. X.

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009).
[CrossRef]

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009).
[CrossRef]

Yao, H.-F.

H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010).
[CrossRef]

Ye, M. Y.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Yin, Z. Q.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

Yu, R.

J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Zeilinger, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Zhan, Z. M.

X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011).
[CrossRef]

Zhang, P.

P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002).
[CrossRef]

Zhang, Y. S.

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

Zhao, X. G.

P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002).
[CrossRef]

Zheng, L. L.

X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011).
[CrossRef]

Zheng, S. B.

S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B 7, 139–141 (2005).
[CrossRef]

Zoller, P.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Am. J. Phys.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Appl. Phys. Lett.

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

J. Mod. Opt.

F. Mattinson, M. Kira, and S. Stenholm, “Adiabatic transfer between cavity modes,” J. Mod. Opt. 48, 889–903 (2001).

J. Opt. B

S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B 7, 139–141 (2005).
[CrossRef]

J. Phys. B

J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Nanostr. Fundam. Appl.

H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010).
[CrossRef]

Phys. Rev.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Phys. Rev. A

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

A. V. Tsukanov, “Entanglement and quantum-state engineering in the optically driven two-electron double-dot structure,” Phys. Rev. A 72, 022344 (2005).
[CrossRef]

X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308 (2004).
[CrossRef]

G. X. Li, “Generation of pure multipartite entangled vibrational states for ions trapped in a cavity,” Phys. Rev. A 74, 055801 (2006).
[CrossRef]

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

Z. J. Deng, K. L. Gao, and M. Feng, “Generation of N-qubit W states with rf SQUID qubits by adiabatic passage,” Phys. Rev. A 74, 064303 (2006).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004).
[CrossRef]

P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002).
[CrossRef]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[CrossRef]

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002).
[CrossRef]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009).
[CrossRef]

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Phys. Rev. B

T. Takagahara, “Theory of exciton doublet structures and polarization relaxation in single quantum dots,” Phys. Rev. B 62, 16840–16855 (2000).
[CrossRef]

A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62, 1568–1571 (2001).
[CrossRef]

H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010).
[CrossRef]

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

C. E. Creffield and G. Platero, “ac-driven localization in a two-electron quantum dot molecule,” Phys. Rev. B 65, 113304 (2002).
[CrossRef]

Phys. Rev. Lett.

G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[CrossRef]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

A. Barenco, D. Deutsch, and A. Ekert, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[CrossRef]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[CrossRef]

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995).
[CrossRef]

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

Phys. Today

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54(5), 46–52 (2001).
[CrossRef]

Science

M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999).
[CrossRef]

Other

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the cavity-fiber-cavity system. N asymmetrical QDMs are individually trapped in N cavities, which are connected with N1 fibers. (b) Schematic of lateral geometry. Each asymmetrical QDMs is composed of two QDs with different band structures. VB is the bias voltage. (c) Band structure of each QDM. (d) Scheme of energy levels of each QDM with the corresponding physical parameters in our paper.

Fig. 2.
Fig. 2.

(a) Time dependence of the Rabi frequencies for cavity modes and the tunnel-coupling pulses. (b) Time evolution of the populations Pψ1 and Pψ2 of the corresponding system states |ψ1=12|21q|02q|03q|04qi=14|0icj=13|0jf and |ψ2=12[i=24(1)i1|01q|0(i1)q|2iq|0(i+1)q|04q]j=14|0jcm=13|0mf.

Fig. 3.
Fig. 3.

Populations Pψ1 and Pψ2 versus (a) tp with tτ=60ps and t=160ps; (b) tτ with t=160ps and t=160ps; (c) tp with tτ=60ps and t=0ps; (d) tτ with tp=40ps and t=0ps. Other experimental parameters are gm=1mev, Tm1=0.30mev, Tm2=0.50mev, Tz=40ps, and T0=20ps. |ψ1 and |ψ2 are the same as in Fig. 2.

Fig. 4.
Fig. 4.

Populations of the corresponding states as functions of durations. Populations Pψ1 and Pψ2 versus (a) t0 with tz=40ps and t=160ps; (b) tz with t0=20ps and t=160ps; (c) t0 with tz=40ps and t=0ps; (d) tz with t0=20ps and t=0ps. Other experimental parameters are the same as in Fig. 3.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

HIqc=i=1N[δi|1i1|+Δi|2i2|+(gi(t)ai|10|+Tei(t)|1i2|+H.c.)],
Hfc=i=1N1ηibi(ai+ai+1)+H.c.,
HItol=HIqc+Hfc.
|ψd|ψd1+|ψd2,
|ψd1=[i=1N(1)i1gi(t)Tei(t)|01q|0(i1)q|2iq|0(i+1)q|0Nq]j=1N|0jcm=1N1|0mf,
|ψd2=[i=1N(1)i|01c|0(i1)c|1ic|0(i+1)c|0Nc]j=1N|0jqm=1N1|0mf,
limt,+Tei(t)gi(t)=0,gi(t)=g(t),(i=1,2,),
limtTe1(t)Tei(t)=0,(i=2,3,),
limt+Te1(t)Tei(t)=1,(i=2,3,),
|21qi=2N|0iqj=1N|0jcm=1N1|0mf
1N[i=1N(1)i1|01q|0(i1)q|2iq|0(i+1)q|0Nq]j=1N|0jcm=1N1|0mf,
g(t)=gmexp[(ttp)2Tz2],
Te(t)i=Te1(t)+Te2(t),(i=2,3,),
Te1(t)=Te1(t),
Te1(t)=Tm1exp[(ttτ)2T02],
Te2(t)=Tm2exp[(ttp)2T02],
|ψ1=12|21q|02q|03q|04qi=14|0icj=13|0jf
|ψ2=12[i=24(1)i1|01q|0(i1)q|2iq|0(i+1)q|04q]j=14|0jcm=13|0mf
limtTei(t)gi(t)=0,(i=1,2,),
limtTe1(t)Tei(t)=0,(i=2,3,),
limt+gi(t)Tei(t)=0,
|21qi=2N|0iqj=1N|0jcm=1N1|0mf
1N[i=1N(1)i1|01c|0(i1)c|1ic|0(i+1)c|0Nc]j=1N|0jqm=1N1|0mf,

Metrics