Abstract

In this paper, we propose an in-plane beam splitter for self-collimated beams in a two-dimensional photonic crystal. An optical filter inserted on the propagation path of the input self-collimated beam divides this beam into two parallel equi-power self-collimated beams. The optical filter has a multistage configuration designed using well-known techniques. The proposed beam splitter has a compact configuration appropriate for integrated optics. Design procedure and the numerical results obtained using the finite-difference time-domain method, as well as a method for extraction of the S parameters of the beam splitter, are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [CrossRef]
  2. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
    [CrossRef]
  3. L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar photonic crystals: from superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
    [CrossRef]
  4. X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
    [CrossRef]
  5. D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
    [CrossRef]
  6. X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
    [CrossRef]
  7. Y. Wang, H. Wang, Q. Xue, and W. Zheng, “Photonic crystal self-collimation sensor,” Opt. Express 20, 12111–12118 (2012).
    [CrossRef]
  8. Y. Xu, S. Wang, S. Lan, X. Lin, Q. Guo, and L. Wu, “Self-collimating polarization beam splitter based on photonic crystal Mach–Zehnder interferometer” J. Opt. Soc. Am. B 27, 1359–1363 (2010).
    [CrossRef]
  9. P. Huang, “Self-collimation and subwavelength imaging in two-dimensional photonic crystal” J. Optoelectron. Adv. Mater. 13, 327–330 (2011).
  10. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
    [CrossRef]
  11. W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self-collimation effect,” Opt. Express 15, 1234–1239 (2007).
    [CrossRef]
  12. G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
    [CrossRef]
  13. B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005).
    [CrossRef]
  14. S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
    [CrossRef]
  15. S. Y. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384–2386 (2003).
    [CrossRef]
  16. M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. 151, 327–334 (2004).
    [CrossRef]
  17. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  18. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2013).
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method, 2nd ed. (Artech House Inc., 2000).
  20. Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
    [CrossRef]
  21. Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007).
    [CrossRef]

2012 (1)

2011 (2)

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

P. Huang, “Self-collimation and subwavelength imaging in two-dimensional photonic crystal” J. Optoelectron. Adv. Mater. 13, 327–330 (2011).

2010 (1)

2009 (1)

G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
[CrossRef]

2007 (5)

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self-collimation effect,” Opt. Express 15, 1234–1239 (2007).
[CrossRef]

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

2005 (1)

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005).
[CrossRef]

2004 (2)

S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[CrossRef]

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. 151, 327–334 (2004).
[CrossRef]

2003 (3)

2002 (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Atakaramians, S.

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. 151, 327–334 (2004).
[CrossRef]

Cai, J. B.

Chen, C.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

Chen, C. H.

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005).
[CrossRef]

S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[CrossRef]

Chen, X.

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

Cojocaru, C.

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Dong, J. W.

Faccio, D.

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Fan, S. H.

X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

Guo, Q.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method, 2nd ed. (Artech House Inc., 2000).

Herrero, R.

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007).
[CrossRef]

Hojjat, N.

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. 151, 327–334 (2004).
[CrossRef]

Huang, P.

P. Huang, “Self-collimation and subwavelength imaging in two-dimensional photonic crystal” J. Optoelectron. Adv. Mater. 13, 327–330 (2011).

Jiang, J. H.

Jiang, X.

D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kim, S. Y.

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Krauss, T. F.

Lan, S.

Li, H.

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

Li, X. Y.

G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
[CrossRef]

Liang, W. Y.

Lin, X.

Loiko, Y.

Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007).
[CrossRef]

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Martin, R.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

Mazilu, M.

Miao, B.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

Miao, B. L.

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005).
[CrossRef]

Murakowski, J.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

Nordin, G. P.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Pertsch, T.

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Prather, D. W.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005).
[CrossRef]

S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[CrossRef]

Pustai, D. M.

Qiang, Z.

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

Qiu, Y.

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Scherer, A.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Schneider, G. J.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

Serrat, C.

Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007).
[CrossRef]

Shahabadi, M.

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. 151, 327–334 (2004).
[CrossRef]

Sharkawy, A.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[CrossRef]

Shi, L. X.

G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
[CrossRef]

Shi, S.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

Shi, S. Y.

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005).
[CrossRef]

S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
[CrossRef]

Sirutkaitis, V.

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Staliunas, K.

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007).
[CrossRef]

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2013).

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method, 2nd ed. (Artech House Inc., 2000).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Trull, J.

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Wang, H.

Wang, H. L.

G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
[CrossRef]

Wang, H. Z.

Wang, S.

Wang, Y.

Y. Wang, H. Wang, Q. Xue, and W. Zheng, “Photonic crystal self-collimation sensor,” Opt. Express 20, 12111–12118 (2012).
[CrossRef]

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

Witzens, J.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Wu, L.

Xu, Y.

Xue, Q.

Yao, P.

D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Yu, X. F.

X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

Yuan, J.

G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
[CrossRef]

Zhang, J.

D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Zhao, D.

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Zheng, G. G.

G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
[CrossRef]

Zheng, W.

Zhou, W.

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

IEE Proc. (1)

M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. 151, 327–334 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

P. Huang, “Self-collimation and subwavelength imaging in two-dimensional photonic crystal” J. Optoelectron. Adv. Mater. 13, 327–330 (2011).

J. Phys. D (2)

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007).
[CrossRef]

G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009).
[CrossRef]

Opt. Commun. (3)

Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007).
[CrossRef]

Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007).
[CrossRef]

X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2013).

A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method, 2nd ed. (Artech House Inc., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Photonic-band diagram for a typical PC for TMz mode of propagation with r/a=0.3 where normalized frequency is defined as fc/a. (b) EFCs and for the same PC where f1>f2>f3>.

Fig. 2.
Fig. 2.

Configuration of a beam splitter.

Fig. 3.
Fig. 3.

One layer of optical filter. ni is assumed 3.4 and n1 is set 1.

Fig. 4.
Fig. 4.

Configuration of the beam splitter.

Fig. 5.
Fig. 5.

(a) Unit-cell in FDTD method. (b) Hz fields distribution in the structure at the normalized frequency of 0.265.

Fig. 6.
Fig. 6.

Transmittance of the optical filter. Its structure, b, is the lattice constant of the new PC. BW is the desired bandwidth.

Fig. 7.
Fig. 7.

Hz field distribution in the beam splitter at the normalized frequency of 0.265.

Fig. 8.
Fig. 8.

(a) Ports location to calculate S parameters. (b) S parameters of the proposed structure shown in Fig. 7.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[Mi]=14n1ni[(n1+ni)ejφi(n1ni)ejφi(n1ni)ejφi(n1+ni)ejφi]×[(n1+ni)ejφ1(nin1)ejφ1(nin1)ejφ1(n1+ni)ejφ1].
[Mt]=[MN][MN1][M2][M1].
Hz(xs,y)=ey22W02;W0=2.5a.
b=(fa/fb)a,
Dy(x0,y)=i=NDyi+ejkyiy+i=NDyie+jkyiy,
Hz(x0,y)=i=NHzi+ejkyiy+i=NHzie+jkyiy,
Dyi=kxiωHzi,
[[I][I]ω/kx[I]ω/kx[I]][[Dy+][Dy]]=[[Dy][Dy]].
|S11|2=i=NDyiHzi*|xini=NDyi+Hzi+*|xin,|S21|2=i=NDyi+Hzi+*|xouti=NDyi+Hzi+*|xin,

Metrics