Abstract

The mode-order conversion characteristics of a heterostructure formed by regular photonic crystals (PCs) with high symmetry and PCs with low symmetry are analyzed numerically. The working principle of the proposed mode-order converter is based on the phase retardation of the incident beam while propagating through the PC heterostructure. This type of phase delay arises from the effective refractive index difference between the symmetrical PC and the asymmetric PC, called a modified annular PC (MAPC), at the specified frequency regimes a/λ=0.2810.34. Further optimizations that are carried out improve the mode-order conversion bandwidth, reaching up to 24%. By means of such a novel-type configuration, a propagating fundamental mode can be transformed into higher-order modes at the output with adequate transmission efficiency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
    [CrossRef]
  2. X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
    [CrossRef]
  3. Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
    [CrossRef]
  4. J. B. Park, D.-M. Yeo, and S.-Y. Shin, “Variable optical mode generator in a multimode waveguide,” IEEE Photon. Technol. Lett. 18, 2084–2086 (2006).
    [CrossRef]
  5. B.-T. Lee and S.-Y. Shin, “Mode-order converter in a multimode waveguide,” Opt. Lett. 28, 1660–1662 (2003).
    [CrossRef]
  6. A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
    [CrossRef]
  7. Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).
    [CrossRef]
  8. J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13, 4180–4184 (2005).
    [CrossRef]
  9. M. W. Pruessner, J. B. Khurgin, T. H. Stievater, W. S. Rabinovich, R. Bass, J. B. Boos, and V. J. Urick, “Demonstration of a mode-conversion cavity add–drop filter,” Opt. Lett. 36, 2230–2232 (2011).
    [CrossRef]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  11. H. Kurt, M. Turduev, and I. H. Giden, “Crescent shaped dielectric periodic structure for light manipulation,” Opt. Express 20, 7184–7194 (2012).
    [CrossRef]
  12. I. H. Giden, M. Turduev, and H. Kurt, “Broadband super-collimation with low-symmetric photonic crystal,” Photon. Nanostr. Fundam. Appl. 11, 132–138 (2013).
    [CrossRef]
  13. I. H. Giden and H. Kurt, “Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering,” Appl. Opt. 51, 1287–1296 (2012).
    [CrossRef]
  14. M. Turduev, I. Giden, and H. Kurt, “Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs,” J. Opt. Soc. Am. B 29, 1589–1598 (2012).
    [CrossRef]
  15. A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, “Band-gap properties of two-dimensional low-index photonic crystals,” Appl. Phys. B 81, 189–192 (2005).
    [CrossRef]
  16. G. Chen and J. U. Kang, “Waveguide mode converter based on two-dimensional photonic crystals,” Opt. Lett. 30, 1656–1658 (2005).
    [CrossRef]
  17. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26, 1102–1104 (2001).
    [CrossRef]
  18. V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20, 28388–28397 (2012).
    [CrossRef]
  19. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
    [CrossRef]
  20. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  21. R. E. Hamam, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacić, “Broadband super-collimation in a hybrid photonic crystal structure,” Opt. Express 17, 8109–8118 (2009).
    [CrossRef]
  22. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
    [CrossRef]
  23. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
    [CrossRef]
  24. S. G. Lee, J. S. Choi, J. E. Kim, H. Y. Park, and C. S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
    [CrossRef]
  25. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  26. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]

2013 (1)

I. H. Giden, M. Turduev, and H. Kurt, “Broadband super-collimation with low-symmetric photonic crystal,” Photon. Nanostr. Fundam. Appl. 11, 132–138 (2013).
[CrossRef]

2012 (4)

2011 (2)

Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
[CrossRef]

M. W. Pruessner, J. B. Khurgin, T. H. Stievater, W. S. Rabinovich, R. Bass, J. B. Boos, and V. J. Urick, “Demonstration of a mode-conversion cavity add–drop filter,” Opt. Lett. 36, 2230–2232 (2011).
[CrossRef]

2010 (2)

X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009 (2)

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

R. E. Hamam, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacić, “Broadband super-collimation in a hybrid photonic crystal structure,” Opt. Express 17, 8109–8118 (2009).
[CrossRef]

2008 (1)

2006 (2)

J. B. Park, D.-M. Yeo, and S.-Y. Shin, “Variable optical mode generator in a multimode waveguide,” IEEE Photon. Technol. Lett. 18, 2084–2086 (2006).
[CrossRef]

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).
[CrossRef]

2005 (3)

2004 (1)

A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
[CrossRef]

2003 (2)

B.-T. Lee and S.-Y. Shin, “Mode-order converter in a multimode waveguide,” Opt. Lett. 28, 1660–1662 (2003).
[CrossRef]

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[CrossRef]

2002 (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

2001 (2)

2000 (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Adibi, A.

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[CrossRef]

Bass, R.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Blair, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Boos, J. B.

Castro, J.

Chen, G.

Chen, Y.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Chen, Z.-H.

Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
[CrossRef]

Chien, S. F.

A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
[CrossRef]

Choi, J. S.

Citrin, D. S.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Deng, X. H.

X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
[CrossRef]

Fan, S.

Fang, L. G.

X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
[CrossRef]

Feng, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Forchel, A.

Fu, Y.

Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
[CrossRef]

Geraghty, D. F.

Giden, I.

Giden, I. H.

Greiner, C. M.

Gu, M.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, “Band-gap properties of two-dimensional low-index photonic crystals,” Appl. Phys. B 81, 189–192 (2005).
[CrossRef]

Hamam, R. E.

Hao, R.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Happ, T. D.

Ho, S.-T.

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).
[CrossRef]

Honkanen, S.

Huang, Y.

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).
[CrossRef]

Iazikov, D.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

R. E. Hamam, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacić, “Broadband super-collimation in a hybrid photonic crystal structure,” Opt. Express 17, 8109–8118 (2009).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

R. E. Hamam, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacić, “Broadband super-collimation in a hybrid photonic crystal structure,” Opt. Express 17, 8109–8118 (2009).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

R. E. Hamam, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacić, “Broadband super-collimation in a hybrid photonic crystal structure,” Opt. Express 17, 8109–8118 (2009).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Kamp, M.

Kang, J. U.

Kee, C. S.

Khurgin, J. B.

Kim, J. E.

Kivshar, Y.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, “Band-gap properties of two-dimensional low-index photonic crystals,” Appl. Phys. B 81, 189–192 (2005).
[CrossRef]

Kurt, H.

Lee, B.-T.

Lee, S. G.

Liu, J. T.

X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
[CrossRef]

Liu, N. H.

X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
[CrossRef]

Liu, V.

Liu, Y.-M.

Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
[CrossRef]

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Low, A. L. Y.

A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
[CrossRef]

Lu, P.-F.

Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
[CrossRef]

Matthews, A.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, “Band-gap properties of two-dimensional low-index photonic crystals,” Appl. Phys. B 81, 189–192 (2005).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Miller, D. A. B.

Momeni, B.

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[CrossRef]

Mossberg, T. W.

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Park, H. Y.

Park, J. B.

J. B. Park, D.-M. Yeo, and S.-Y. Shin, “Variable optical mode generator in a multimode waveguide,” IEEE Photon. Technol. Lett. 18, 2084–2086 (2006).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Scherer, A.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Shin, S.-Y.

J. B. Park, D.-M. Yeo, and S.-Y. Shin, “Variable optical mode generator in a multimode waveguide,” IEEE Photon. Technol. Lett. 18, 2084–2086 (2006).
[CrossRef]

B.-T. Lee and S.-Y. Shin, “Mode-order converter in a multimode waveguide,” Opt. Lett. 28, 1660–1662 (2003).
[CrossRef]

Soljacic, M.

Stievater, T. H.

Summers, C. J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Teo, C. F.

A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
[CrossRef]

Turduev, M.

Urick, V. J.

Wang, X.-H.

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, “Band-gap properties of two-dimensional low-index photonic crystals,” Appl. Phys. B 81, 189–192 (2005).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Witzens, J.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Xu, G.

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).
[CrossRef]

Yeo, D.-M.

J. B. Park, D.-M. Yeo, and S.-Y. Shin, “Variable optical mode generator in a multimode waveguide,” IEEE Photon. Technol. Lett. 18, 2084–2086 (2006).
[CrossRef]

Yong, Y. S.

A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
[CrossRef]

You, A. H.

A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
[CrossRef]

Yu, Z.-Y.

Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
[CrossRef]

Zhou, Z.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Zou, L. E.

X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

B. Momeni and A. Adibi, “Optimization of photonic crystal demultiplexers based on the superprism effect,” Appl. Phys. B 77, 555–560 (2003).
[CrossRef]

X. H. Deng, L. G. Fang, J. T. Liu, L. E. Zou, and N. H. Liu, “Multichannel filtering properties of photonic crystals containing single-negative materials,” Appl. Phys. B 99, 507–511 (2010).
[CrossRef]

Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011).
[CrossRef]

A. Matthews, X.-H. Wang, Y. Kivshar, and M. Gu, “Band-gap properties of two-dimensional low-index photonic crystals,” Appl. Phys. B 81, 189–192 (2005).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. B. Park, D.-M. Yeo, and S.-Y. Shin, “Variable optical mode generator in a multimode waveguide,” IEEE Photon. Technol. Lett. 18, 2084–2086 (2006).
[CrossRef]

A. L. Y. Low, Y. S. Yong, A. H. You, S. F. Chien, and C. F. Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Technol. Lett. 16, 1673–1675 (2004).
[CrossRef]

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Photon. Nanostr. Fundam. Appl. (1)

I. H. Giden, M. Turduev, and H. Kurt, “Broadband super-collimation with low-symmetric photonic crystal,” Photon. Nanostr. Fundam. Appl. 11, 132–138 (2013).
[CrossRef]

Phys. Rev. B (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[CrossRef]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Geometrical representations of the unit cells for the MAPC and the regular PC are shown in (a) and (b), respectively. The corresponding square lattice geometries are also given in the same figures. (c) The corresponding Brillouin zone for the MAPC case is demonstrated.

Fig. 2.
Fig. 2.

(a) The corresponding dispersion curves and (b) phase index distributions of the MAPCs and PCs. The solid red and dashed black lines in both the dispersion and the phase refractive index, np, curves correspond to the MAPCs and PCs, respectively. The operating frequency range is shaded in cyan in the same figures. The second band iso-frequency contours of the designed (c) regular PC with radius R2=0.34a and (d) the MAPC with geometric parameters (R1,r,Δs)=(0.40a,0.19a,0.15a) are demonstrated.

Fig. 3.
Fig. 3.

Schematic drawing of the PC heterostructure MOC design.

Fig. 4.
Fig. 4.

Time domain snapshots at the working frequency of a/λ=0.31 are presented in order to demonstrate the TM field distributions of (a) the PC structure and (b) the mode converter structure with the MAPC region, which is shown by a dashed box. Red (designated “+”) and blue (designated “−”) represent the maximum and minimum electric field (Ez) values, respectively. The black arrows represent the incident and output beam directions. Cross sections are taken at positions, which are shown by dashed lines in (a) and (b). The corresponding field amplitude profiles for the TM0 and TM1 modes are plotted in (c).

Fig. 5.
Fig. 5.

(a) Schematic view of the designed mode converter structure sandwiched between two ridge input and output waveguides. (b) Normalized transmission efficiency versus normalized frequency when the structure is excited with a broadband input source. The frequency range where the structure has high transmission efficiency is colored. (c) Zoomed version of the transmittance, which is colored in the previous plot, is presented. Region I indicates the focusing region while Region II indicates the self-collimation region.

Fig. 6.
Fig. 6.

(a) Representative illustration of the MOC structure. (b) Time domain snapshot of the structure, which has the MAPC region at the center and the PC on the edges. The corresponding electric field distribution is obtained at the operating frequency of a/λ=0.31. With the help of this configuration, a higher-order (TM2) mode is achieved at the output of the structure. Red (designated “+”) and blue (designated “−”) represent the maximum and minimum electric field (Ez) values, respectively. (c) Relative electric field profile of the output TM2 mode.

Fig. 7.
Fig. 7.

(a) Cross-sectional view of the 3D MOC design. The structure is made up of Si (nSi=3.46) with a height of 5a and placed on a silica substrate (nSiO2=1.44). (b) Normalized transmission efficiency information that is gathered from 3D FDTD calculations. (c) Zoomed version of the transmission spectrum.

Fig. 8.
Fig. 8.

(a) Dispersion diagrams and (b) phase index distributions of the MAPC and the PC. The solid red and dashed black lines correspond to the MAPC and the PC, respectively. The second band iso-frequency contours of the new (c) regular PC with radius R2=0.36a and (d) MAPC with geometric parameters (R1,r,Δs)=(0.40a,0.19a,0.15a) are demonstrated.

Tables (2)

Tables Icon

Table 1. Mode-Order Conversion Performance Analyses in Terms of Transmission, Phase Shift, and Amplitude Comparison within the Operating Frequency Regime

Tables Icon

Table 2. Mode-Order Conversion Performance Analyses for the New Configuration in Terms of Transmission, Phase Shift, and Amplitude Comparison within the Operating Frequency Regime

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

(|Ez,gen(y)||Ez,ref(y)|)dy|Ez,ref(y)|dy,

Metrics