Abstract

Whispering gallery modes (WGMs) in microspheres containing embedded fluorophores (e.g., organic dyes or quantum dots) may find refractometric sensing or microlasing applications. However, there have been relatively few investigations on the relationship between the intrinsic microsphere resonances and the WGMs observed in fluorescence spectra for emitters coupled to the microsphere. Here we find that an apparently simple fluorescence WGM spectrum can mask a much more complicated underlying microcavity mode structure and that the observed fluorescence spectra are controlled by the emitter linewidth. By examining the cavity structure, we also verify that an effective ensemble emitter linewidth can be extracted from the fluorescence data. Finally, spectral diffusion is suggested as a possible origin of the periodic fluorescence WGM spectra observed in many microsphere cavities, without which these resonances might be unobservable.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [CrossRef]
  2. A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
    [CrossRef]
  3. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
    [CrossRef]
  4. T. D. Ladd and Y. Yamamoto, “Simple quantum logic gate with quantum dot cavity QED systems,” Phys. Rev. B 84, 235307 (2011).
    [CrossRef]
  5. S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
    [CrossRef]
  6. E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
    [CrossRef]
  7. F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
    [CrossRef]
  8. G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
    [CrossRef]
  9. K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
    [CrossRef]
  10. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
    [CrossRef]
  11. H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27, 536–543 (2010).
    [CrossRef]
  12. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
    [CrossRef]
  13. H. A. Huckabay and R. C. Dunn, “Whispering gallery mode imaging for the multiplexed detection of biomarkers,” Sens. Actuators B 160, 1262–1267 (2011).
    [CrossRef]
  14. H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006).
    [CrossRef]
  15. C. P. K. Manchee, V. Zamora, J. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcavities,” Opt. Express 19, 21540–21551 (2011).
    [CrossRef]
  16. Y. Zhi, T. Thiessen, and A. Meldrum, “Silicon quantum-dot-coated microspheres for microfluidic refractive index sensing,” J. Opt. Soc. Am. B 30, 51–56 (2013).
    [CrossRef]
  17. T. Yu, Y. Q. Ji, A. D. Zhu, H. F. Wang, and S. Zhang, “Robust teleportation and multipartite entanglement analyzers via quantum-dot spins in weak-coupling cavity quantum electrodynamics regime,” J. Opt. Soc. Am. B 29, 2029–2034 (2012).
    [CrossRef]
  18. B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78, 235306 (2008).
    [CrossRef]
  19. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010).
    [CrossRef]
  20. A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
    [CrossRef]
  21. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
    [CrossRef]
  22. P. Bianucci, X. Wang, J. Veinot, and A. Meldrum, “Silicon nanocrystals on bottle resonators: mode structure, loss mechanisms and emission dynamics,” Opt. Express 18, 8466–8481 (2010).
    [CrossRef]
  23. Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013).
    [CrossRef]
  24. I. Teraoka and S. Arnold, “Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer,” J. Opt. Soc. Am. B 23, 1434–1441 (2006).
    [CrossRef]
  25. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653–659 (2007).
    [CrossRef]
  26. P. Bianucci, Y. Zhi, F. Marsiglio, J. Silverstone, and A. Meldrum, “Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators,” Phys. Status Solidi A 208, 639–645 (2011).
    [CrossRef]
  27. http://www.wolfram.com .
  28. R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
    [CrossRef]
  29. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengfizel, and R. K. Chang, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
    [CrossRef]
  30. G. Lin, B. Qian, Y. Candela, J.-B. Jager, Z. Cai, V. Lefévre-Seguin, and J. Hare, “Excitation mapping of whispering gallery modes in silica microcavities,” Opt. Lett. 35, 583–585 (2010).
    [CrossRef]
  31. V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11, 153–165 (1999).
  32. J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002).
    [CrossRef]
  33. I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005).
    [CrossRef]
  34. J. Martin, F. Chichos, and C. von Borczyskowski, “Spectral diffusion of quasi-localized excitons in single silicon nanocrystals,” J. Lumin. 132, 2161–2165 (2012).
    [CrossRef]
  35. S. A. Empedocles and M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
    [CrossRef]
  36. A. Majumdar, E. D. Kim, and J. Vuckovic, “Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity,” Phys. Rev. B 84, 195304 (2011).
    [CrossRef]
  37. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef]
  38. G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
    [CrossRef]
  39. M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
    [CrossRef]
  40. I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012).
    [CrossRef]
  41. J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
    [CrossRef]
  42. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
    [CrossRef]
  43. A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
    [CrossRef]
  44. J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
    [CrossRef]
  45. H. Yukawa, S. Arnold, and M. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999).
    [CrossRef]
  46. K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000).
    [CrossRef]
  47. H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.
  48. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
    [CrossRef]

2013

Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013).
[CrossRef]

Y. Zhi, T. Thiessen, and A. Meldrum, “Silicon quantum-dot-coated microspheres for microfluidic refractive index sensing,” J. Opt. Soc. Am. B 30, 51–56 (2013).
[CrossRef]

2012

T. Yu, Y. Q. Ji, A. D. Zhu, H. F. Wang, and S. Zhang, “Robust teleportation and multipartite entanglement analyzers via quantum-dot spins in weak-coupling cavity quantum electrodynamics regime,” J. Opt. Soc. Am. B 29, 2029–2034 (2012).
[CrossRef]

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

J. Martin, F. Chichos, and C. von Borczyskowski, “Spectral diffusion of quasi-localized excitons in single silicon nanocrystals,” J. Lumin. 132, 2161–2165 (2012).
[CrossRef]

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012).
[CrossRef]

2011

P. Bianucci, Y. Zhi, F. Marsiglio, J. Silverstone, and A. Meldrum, “Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators,” Phys. Status Solidi A 208, 639–645 (2011).
[CrossRef]

A. Majumdar, E. D. Kim, and J. Vuckovic, “Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity,” Phys. Rev. B 84, 195304 (2011).
[CrossRef]

T. D. Ladd and Y. Yamamoto, “Simple quantum logic gate with quantum dot cavity QED systems,” Phys. Rev. B 84, 235307 (2011).
[CrossRef]

H. A. Huckabay and R. C. Dunn, “Whispering gallery mode imaging for the multiplexed detection of biomarkers,” Sens. Actuators B 160, 1262–1267 (2011).
[CrossRef]

C. P. K. Manchee, V. Zamora, J. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcavities,” Opt. Express 19, 21540–21551 (2011).
[CrossRef]

2010

G. Lin, B. Qian, Y. Candela, J.-B. Jager, Z. Cai, V. Lefévre-Seguin, and J. Hare, “Excitation mapping of whispering gallery modes in silica microcavities,” Opt. Lett. 35, 583–585 (2010).
[CrossRef]

H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27, 536–543 (2010).
[CrossRef]

P. Bianucci, X. Wang, J. Veinot, and A. Meldrum, “Silicon nanocrystals on bottle resonators: mode structure, loss mechanisms and emission dynamics,” Opt. Express 18, 8466–8481 (2010).
[CrossRef]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010).
[CrossRef]

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
[CrossRef]

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

2009

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

2008

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78, 235306 (2008).
[CrossRef]

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[CrossRef]

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

2007

2006

I. Teraoka and S. Arnold, “Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer,” J. Opt. Soc. Am. B 23, 1434–1441 (2006).
[CrossRef]

A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[CrossRef]

H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006).
[CrossRef]

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

2005

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005).
[CrossRef]

2004

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
[CrossRef]

A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[CrossRef]

2003

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

2002

J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002).
[CrossRef]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef]

2001

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

2000

K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000).
[CrossRef]

1999

H. Yukawa, S. Arnold, and M. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999).
[CrossRef]

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11, 153–165 (1999).

S. A. Empedocles and M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

1993

1992

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Adamec, F.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Aichele, T.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Albert, F.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

André, R.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Annamalai, S.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Arnold, S.

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653–659 (2007).
[CrossRef]

I. Teraoka and S. Arnold, “Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer,” J. Opt. Soc. Am. B 23, 1434–1441 (2006).
[CrossRef]

H. Yukawa, S. Arnold, and M. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999).
[CrossRef]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Atature, M.

A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[CrossRef]

Barnes, M. D.

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Bawendi, M. G.

S. A. Empedocles and M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

Beckham, R. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

Beier, H. T.

Besombes, L.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Beveratos, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Bianucci, P.

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Bloch, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Bougerol, C.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Braun, T.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

Brongersma, M.

H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.

Brongersma, M. L.

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[CrossRef]

A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[CrossRef]

Cai, Z.

Candela, Y.

Cazzanelli, M.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

Chakrabortty, S.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Chan, Y.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Chang, R. K.

Chemla, Y. R.

Chen, G.

Chen, H.

H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.

Chichos, F.

J. Martin, F. Chichos, and C. von Borczyskowski, “Spectral diffusion of quasi-localized excitons in single silicon nanocrystals,” J. Lumin. 132, 2161–2165 (2012).
[CrossRef]

Coté, G. L.

Crisafulli, O.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Dal Negro, L.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

del Valle, E.

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Digonnet, M. J. F.

A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[CrossRef]

Dohnalova, K.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Dousse, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Dunn, R. C.

H. A. Huckabay and R. C. Dunn, “Whispering gallery mode imaging for the multiplexed detection of biomarkers,” Sens. Actuators B 160, 1262–1267 (2011).
[CrossRef]

Empedocles, S. A.

S. A. Empedocles and M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

Fan, X.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006).
[CrossRef]

Farca, G.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
[CrossRef]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef]

Fauchet, P. M.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.

Feldmann, J.

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

Fernée, M. J.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Forchel, A.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

Francois, A.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

Fucikova, A.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Gayral, B.

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78, 235306 (2008).
[CrossRef]

Gérard, J. M.

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78, 235306 (2008).
[CrossRef]

Ghulinyan, M.

A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
[CrossRef]

Gonzalez-Tudela, A.

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Hare, J.

Heindel, T.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

Himmelhaus, M.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

Hof, M.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Hofling, S.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

Huckabay, H. A.

H. A. Huckabay and R. C. Dunn, “Whispering gallery mode imaging for the multiplexed detection of biomarkers,” Sens. Actuators B 160, 1262–1267 (2011).
[CrossRef]

Humpolickova, J.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Imamoglu, A.

A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[CrossRef]

Jager, J.-B.

Ji, Y. Q.

Juhasz, R.

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005).
[CrossRef]

J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002).
[CrossRef]

Kekatpure, R. D.

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[CrossRef]

Kheng, K.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Kim, E. D.

A. Majumdar, E. D. Kim, and J. Vuckovic, “Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity,” Phys. Rev. B 84, 195304 (2011).
[CrossRef]

Kiraz, A.

A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[CrossRef]

Kotov, N. A.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
[CrossRef]

Krebs, O.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Krishna, S.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Kusova, K.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Ladd, T. D.

T. D. Ladd and Y. Yamamoto, “Simple quantum logic gate with quantum dot cavity QED systems,” Phys. Rev. B 84, 235307 (2011).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Laussy, F. P.

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Lefévre-Seguin, V.

Lefèvre-Seguin, V.

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11, 153–165 (1999).

Lemaitre, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Liao, Y. L.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Lin, G.

Linnros, J.

I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012).
[CrossRef]

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005).
[CrossRef]

J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002).
[CrossRef]

Littleton, B. N.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Liu, X. F.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Lounis, B.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Louyer, Y.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Lupton, J. M.

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

Majumdar, A.

A. Majumdar, E. D. Kim, and J. Vuckovic, “Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity,” Phys. Rev. B 84, 195304 (2011).
[CrossRef]

Manchee, C. P. K.

Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013).
[CrossRef]

C. P. K. Manchee, V. Zamora, J. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcavities,” Opt. Express 19, 21540–21551 (2011).
[CrossRef]

Marsiglio, F.

P. Bianucci, Y. Zhi, F. Marsiglio, J. Silverstone, and A. Meldrum, “Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators,” Phys. Status Solidi A 208, 639–645 (2011).
[CrossRef]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010).
[CrossRef]

Martin, J.

J. Martin, F. Chichos, and C. von Borczyskowski, “Spectral diffusion of quasi-localized excitons in single silicon nanocrystals,” J. Lumin. 132, 2161–2165 (2012).
[CrossRef]

Matsuda, K.

K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000).
[CrossRef]

Mazumder, M. M.

Meissner, K. E.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27, 536–543 (2010).
[CrossRef]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

Meldrum, A.

Mitsuishi, K.

I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012).
[CrossRef]

Miyano, M.

H. Yukawa, S. Arnold, and M. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999).
[CrossRef]

Morigi, G.

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Müller, J.

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

Mulvaney, P.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Navarro-Urrios, D.

A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
[CrossRef]

Nishi, K.

K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000).
[CrossRef]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Painter, O. J.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Pang, S.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

Pavesi, L.

A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
[CrossRef]

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

Pelant, I.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Perahia, R.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Pitanti, A.

A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
[CrossRef]

Plakhotnik, T.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Poizat, J.-Ph.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Posani, K. T.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Potzner, C.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Pucker, G.

A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
[CrossRef]

Qian, B.

Ramsey, J. M.

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Reitzenstein, S.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

Richard, M.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Rogach, A. L.

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

Rosenberger, A. T.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
[CrossRef]

Ruan, J.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

Sagnes, I.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Saiki, T.

K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000).
[CrossRef]

Saito, H.

K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000).
[CrossRef]

Sallen, G.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Santori, C.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef]

Schneider, C.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Schyugov, I.

I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012).
[CrossRef]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Senellart, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Serpengfizel, A.

Shin, J. H.

A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[CrossRef]

H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.

Shopova, S. I.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
[CrossRef]

Silverstone, J.

Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013).
[CrossRef]

P. Bianucci, Y. Zhi, F. Marsiglio, J. Silverstone, and A. Meldrum, “Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators,” Phys. Status Solidi A 208, 639–645 (2011).
[CrossRef]

C. P. K. Manchee, V. Zamora, J. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcavities,” Opt. Express 19, 21540–21551 (2011).
[CrossRef]

Solomon, G. S.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef]

Stun, Y. T. C.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Suffczynski, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Sung, J.-Y.

A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[CrossRef]

H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.

Suter, J. D.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006).
[CrossRef]

Sychugov, I.

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005).
[CrossRef]

Talapin, D. V.

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

Tamarat, P.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Tatarenko, S.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Tejedor, C.

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Teraoka, I.

Tewary, A.

A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[CrossRef]

H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.

Thiessen, T.

Tribu, A.

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Tripathi, V.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Vacha, F.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Valenta, J.

I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012).
[CrossRef]

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005).
[CrossRef]

J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002).
[CrossRef]

Veinot, J.

Veinot, J. G. C.

Voisin, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

von Borczyskowski, C.

J. Martin, F. Chichos, and C. von Borczyskowski, “Spectral diffusion of quasi-localized excitons in single silicon nanocrystals,” J. Lumin. 132, 2161–2165 (2012).
[CrossRef]

Vuckovic, J.

A. Majumdar, E. D. Kim, and J. Vuckovic, “Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity,” Phys. Rev. B 84, 195304 (2011).
[CrossRef]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef]

Wang, H. F.

Wang, X.

Weisse-Bernstein, N. R.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

Weller, H.

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

White, I. M.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006).
[CrossRef]

Whitten, W. B.

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Wickramanayake, W. M. S.

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Worschech, L.

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

Wu, X. Y.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Xing, G. C.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Yamamoto, Y.

T. D. Ladd and Y. Yamamoto, “Simple quantum logic gate with quantum dot cavity QED systems,” Phys. Rev. B 84, 235307 (2011).
[CrossRef]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef]

Yeow, E. K. L.

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Yu, T.

Yukawa, H.

H. Yukawa, S. Arnold, and M. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999).
[CrossRef]

Zamora, V.

Zhang, S.

Zhang, Z.

Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013).
[CrossRef]

Zhi, Y.

Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013).
[CrossRef]

Y. Zhi, T. Thiessen, and A. Meldrum, “Silicon quantum-dot-coated microspheres for microfluidic refractive index sensing,” J. Opt. Soc. Am. B 30, 51–56 (2013).
[CrossRef]

P. Bianucci, Y. Zhi, F. Marsiglio, J. Silverstone, and A. Meldrum, “Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators,” Phys. Status Solidi A 208, 639–645 (2011).
[CrossRef]

Zhu, A. D.

Zhu, H.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006).
[CrossRef]

Zippilli, S.

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

ACS Nano

G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012).
[CrossRef]

Adv. Funct. Mater.

J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000).
[CrossRef]

F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010).
[CrossRef]

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
[CrossRef]

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[CrossRef]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008).
[CrossRef]

S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004).
[CrossRef]

J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[CrossRef]

J. Chem. Phys.

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

J. Lumin.

J. Martin, F. Chichos, and C. von Borczyskowski, “Spectral diffusion of quasi-localized excitons in single silicon nanocrystals,” J. Lumin. 132, 2161–2165 (2012).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

S. A. Empedocles and M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999).
[CrossRef]

J. Phys. Chem. Lett.

M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012).
[CrossRef]

Nat. Photonics

G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[CrossRef]

Nature

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[CrossRef]

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11, 153–165 (1999).

Phys. Rev. A

A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[CrossRef]

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[CrossRef]

H. Yukawa, S. Arnold, and M. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999).
[CrossRef]

Phys. Rev. B

J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005).
[CrossRef]

I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012).
[CrossRef]

A. Majumdar, E. D. Kim, and J. Vuckovic, “Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity,” Phys. Rev. B 84, 195304 (2011).
[CrossRef]

T. D. Ladd and Y. Yamamoto, “Simple quantum logic gate with quantum dot cavity QED systems,” Phys. Rev. B 84, 235307 (2011).
[CrossRef]

E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010).
[CrossRef]

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78, 235306 (2008).
[CrossRef]

Phys. Rev. Lett.

A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010).
[CrossRef]

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Phys. Status Solidi A

P. Bianucci, Y. Zhi, F. Marsiglio, J. Silverstone, and A. Meldrum, “Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators,” Phys. Status Solidi A 208, 639–645 (2011).
[CrossRef]

Plasmonics

Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013).
[CrossRef]

Sens. Actuators B

H. A. Huckabay and R. C. Dunn, “Whispering gallery mode imaging for the multiplexed detection of biomarkers,” Sens. Actuators B 160, 1262–1267 (2011).
[CrossRef]

Sensors

H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006).
[CrossRef]

Other

http://www.wolfram.com .

H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

TE- and TM-polarized fluorescence spectra of the QD-coated microsphere. The upper inset shows a fluorescence image of the microsphere, with the orientation of TE and TM polarization directions shown. The vertical line indicates the entrance slit position of the spectrometer. The lower inset shows one mode cropped from the spectrum and the corresponding best-fit Lorentzian curve. The inset scale is converted to THz units.

Fig. 2.
Fig. 2.

(a) Subset of transmission spectra taken as the distance between the taper and the microsphere was reduced. (b) The central wavelength (circles) and Q-factor (squares) as a function of distance moved, as the taper approached the microsphere. The two points inside the dashed square indicates sphere-taper contact. Because the taper eventually snaps into contact with the microsphere, the horizontal axis indicates the distance moved relative to the location of the initial spectrum. Graphs (b) show the full data set; in (a) only a subset is shown for space reasons.

Fig. 3.
Fig. 3.

Transmission and photoluminescence (PL) spectra for the QD-coated microsphere. Both (a) TE and (b) TM polarizations are shown. The fluorescence WGMs correspond to groups of transmission modes. The slight wavelength mismatch may be due to the different calibration procedures required to obtain the two types of spectra. The zoom-ins (a2) and (b2) show an expanded view of two of the transmission mode families.

Fig. 4.
Fig. 4.

(a) Intensity profile of the first- and second-order radial TE modes with angular orders l=279 and l=270, respectively, where r and a on the horizontal axis represent the radial distance from the center of the sphere and the sphere’s radius, respectively. Resonant wavelengths are 777.58 and 777.04 nm. (b) Intensity profiles of the first- and second-order radial TM modes with l=278 and l=269, respectively. Resonant wavelengths are 777.46 and 777.05 nm. In both (a) and (b), the dashed line represents the first-order-radial mode, and the solid line represents the second-order-radial mode. The QD film is represented by the vertical shaded line.

Fig. 5.
Fig. 5.

TE transmission spectrum (blue line), shown along with its convolution with the spectrometer transfer function (black line) or with a QD linewidth of 1.6 meV (red line). The results were inverted to simulate a fluorescence spectrum. The spectrometer transfer function results in a broad, double-peaked mode, while a QD linewidth convolved with the transmission spectrum would result in a single, slightly asymmetric fluorescence maximum, similar to the experimental observation.

Fig. 6.
Fig. 6.

PL spectra of a QD-coated microsphere at 6 K (solid line) and 295 K (dashed line), respectively. The inset shows the Lorentzian fitting of one mode.

Fig. 7.
Fig. 7.

Simulated fluorescence spectrum from a single cavity mode with Q=5×105 centered at 800 nm, for a QD linewidth of 0.8 meV. The peak becomes narrower as a greater fraction of the QDs emit closer to the cavity resonance. The spectrum would eventually become equivalent to that for a single particle centered on resonance (dashed red line). The Q-factor in that case is close to the estimated value for a single particle, given by Q=λpeak/(ΔλQDΔλcavity).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

El(r)={Alψl(n1kr)r<atBlψl(n2kr)+Clξl1(n2kr)at<r<aDlξl1(n3kr)r>a.
n3ξl1(n3ka)n2ξl1(n3ka)=(Bl/Cl)ψl(n2ka)+ξl1(n2ka)(Bl/Cl)ψl(n2ka)+ξl1(n2ka)
(Bl/Cl)=n2ψl(n1k(at))ξl1(n2k(at))n1ψl(n1k(at))ξl1(n2k(at))n2ψl(n1k(at))ψl(n2k(at))+n1ψl(n1k(at))ψl(n2k(at)).

Metrics