Abstract

We present a generalized model for optical refrigeration with Ho3+ doped fluoride crystals in which the dopant concentration dependent upconversion is considered. Based on the spectrum properties of candidate rare-earth ions (Ho3+, Tm3+, and Er3+) for optical refrigeration, a common criterion for upconversion assisted cooling is derived. The cooling performances of Ho3+:YLiF4 crystals are simulated to reveal the practical dopant concentration range for cooling. It is found that the optimal dopant concentration is determined by a balancing consideration of heat loads induced by background absorption and fluorescence quenching. The appropriate pump wavelengths for optical refrigeration with Ho3+:YLiF4 crystals are also indicated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012).
    [CrossRef]
  2. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
    [CrossRef]
  3. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).
  4. A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
    [CrossRef]
  5. T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
    [CrossRef]
  6. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [CrossRef]
  7. A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
    [CrossRef]
  8. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
    [CrossRef]
  9. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
    [CrossRef]
  10. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
    [CrossRef]
  11. M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
    [CrossRef]
  12. R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).
  13. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
    [CrossRef]
  14. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110  K,” Opt. Express 19, 18229–18236 (2011).
    [CrossRef]
  15. N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
    [CrossRef]
  16. S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
    [CrossRef]
  17. A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
    [CrossRef]
  18. N. P. Barnes and B. M. Walsh, “Ho:Ho upconversion: Applications to Ho lasers,” J. Opt. Soc. Am. B 20, 1212–1219 (2003).
    [CrossRef]
  19. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys: Condens. Matter 17, 7643–7665 (2005).
    [CrossRef]
  20. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
    [CrossRef]
  21. G. Z. Dong, X. L. Zhang, and L. Li, “Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride,” J. Opt. Soc. Am. B 30, 939–944 (2013).
    [CrossRef]
  22. C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
    [CrossRef]
  23. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  24. J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
    [CrossRef]
  25. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
  26. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [CrossRef]
  27. T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
    [CrossRef]

2013

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

G. Z. Dong, X. L. Zhang, and L. Li, “Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride,” J. Opt. Soc. Am. B 30, 939–944 (2013).
[CrossRef]

2012

2011

2010

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

2009

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
[CrossRef]

N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[CrossRef]

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

2008

2006

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

2005

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys: Condens. Matter 17, 7643–7665 (2005).
[CrossRef]

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

2004

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

2003

2002

2000

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

1998

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

1995

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

1983

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

1968

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

1953

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

1950

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

1946

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

1929

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Al-Saleh, M.

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

Balda, R.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

Barnes, N. P.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys: Condens. Matter 17, 7643–7665 (2005).
[CrossRef]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Ho:Ho upconversion: Applications to Ho lasers,” J. Opt. Soc. Am. B 20, 1212–1219 (2003).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Bartolo, B. D.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[CrossRef]

Bowman, S. R.

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Condon, N. J.

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Dong, G. Z.

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Epstein, R. I.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110  K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+doped BaY2F8,” Opt. Express 16, 1704–1710 (2008).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).

Fernandez, J.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

Friebele, E. J.

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

Garcia-Adeva, A. J.

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
[CrossRef]

Geusic, J. E.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys: Condens. Matter 17, 7643–7665 (2005).
[CrossRef]

Hasselbeck, M. P.

Hehlen, M. P.

Heo, J.

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

Hoyt, C. W.

C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

Kastler, A.

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

Kim, W.

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

Kushida, T.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

Lee, T. H.

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

Li, L.

Lieto, A. D.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110  K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110  K,” Opt. Express 19, 18229–18236 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Mendioroz, A.

Mungan, C. E.

N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

O’Connor, S.

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[CrossRef]

Parisi, D.

Patterson, W.

Petros, M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Powell, R. C.

R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Quimby, R. S.

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009).
[CrossRef]

Schuurmans, M. F. H.

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

Seletskiy, D. V.

Shaw, B.

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

Sheik-Bahae, M.

Singh, U. N.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Tonelli, M.

van Dijk, J. M. F.

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

Voda, M.

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys: Condens. Matter 17, 7643–7665 (2005).
[CrossRef]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Ho:Ho upconversion: Applications to Ho lasers,” J. Opt. Soc. Am. B 20, 1212–1219 (2003).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Yu, J.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Zhang, X. L.

Adv. Opt. Photon.

J. Appl. Phys.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

J. Chem. Phys.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

J. Phys. Radium

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

J. Phys: Condens. Matter

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys: Condens. Matter 17, 7643–7665 (2005).
[CrossRef]

Nat. Photonics

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Nature

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009).
[CrossRef]

Phys. Rev. Lett.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef]

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968).
[CrossRef]

Proc. SPIE

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
[CrossRef]

S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013).
[CrossRef]

Z. Phys.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Other

R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).

R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of Ho3+ cooling process in fluoride crystal with consideration of ETU. The ground state (I58) Ho3+ ions transit to the first excited state (I57) by absorbing laser excitations of energy hv (solid red arrow on the left). Part of the I57 Ho3+ ions decay by emitting anti-Stokes fluorescence at average frequency v10 (solid blue arrow). The I57 Ho3+ ions can also transit to the third excited state (I55) through I57I58; I57I58 ETU process (solid green arrows) with about two host phonons absorption (solid gray arrow on the top). The I55 and I56 Ho3+ ions decay to the lower energy states either radiatively (solid purple and brown arrows) or nonradiatively (dashed gray arrows on the right). Other energy transfer processes and ESA process are neglected due to the large energy mismatches. The level labels used in the rate equations are also indicated.

Fig. 2.
Fig. 2.

(a) Absorption and emission cross section (π-pol.) of Ho3+ I57 manifold. (b) and (c) emission cross section (π-pol.) of Ho3+ I56 and I55 manifolds in YLiF4 host matrix at room temperature [20,26]. The dashed lines indicate the average fluorescence wavelengths.

Fig. 3.
Fig. 3.

(a) The cooling power density and (b) the cooling efficiency of Ho3+:YLiF4 crystal as functions of pump intensity and dopant concentration. The pump wavelength is 2070 nm, and the background absorption is 4.0×104cm1.

Fig. 4.
Fig. 4.

Comparison between M1 (dotted curves), M2 (solid curves), and M3 (dashed curves). (a) the cooling power density and (b) the cooling efficiency. The dopant concentration is 0.45%, the pump wavelength is 2070 nm, and the background absorption is 4.0×104cm1.

Fig. 5.
Fig. 5.

Maximum cooling power density and the corresponding optimal dopant concentration of Ho3+:YLiF4 crystal versus pump wavelength at background absorptions of (a) 4.0×104cm1 and (b) 4.0×105cm1.

Tables (1)

Tables Icon

Table 1. Branching Ratios, Lifetimes and Energy Gaps in Ho3+:YLiF4

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

dn3dt=(β30W30+β31W31+β32W32)n3+p11(C)n12,
dn2dt=(β20W20+β21W21)n2+β32W32n3,
dn1dt=σabs(ν)(n0n1)Ihν+β31W31n3+β21W21n2W10n12p11(C)n12,
i=03ni=CN,
Wij=ηe,ijWi,r+Wij,nr,
p11(C)C2.
Pabs=Pr+Pb=σabs(ν)(n0sn1s)I+αbI,
P3=β32W32,nrε32n3sηe,30β30W30,rhν30n3sηe,31β31W31,rhν31n3s,
P2=β21W21,nrε21n2sηe,20βW20,r20hν20n2s,
P1=ηe,10W10,rhν10n1s,
Pcool=P1P2P3Pabs.
ηcool=PcoolPabs.
dn1dt=σabs(ν)(n0n1)IhνW10n1p11(C)n12.
p11(C)n1s2hν=β21W21,nrε21n2s+β32W32,nrε32n3s.
ηcool=ηextηabsν10ν1,
ηabs=[1+αb/σabs(n0sn1s)]1
ηext=(1+W10,nr/W10,r)1,
W10,nr=W10,nr+p11(C)n1s,
ηext(C)ηabs(C)>vv10
ηij=ηe,ijβijWij,r(k=0i1βikWik)1,
ξij=βijWij,nr(k=0i1βikWik)1,
Euf=η30hν30+η31hν31+ξ32η20hν20+(η31+ξ32ξ21)η10hν10,
Euv=ξ32ε32+ξ32ξ21ε21+(η31+ξ32ξ21)ξ10ε10ξ32ε32+ξ32ξ21ε21,
EufEuv>Eua=2hv.
ν<νu,
Vu=η30v30+η31v31+ξ32η20v20+(η31η10+ξ32ξ21η10)v10ξ32f32ξ32ξ21f21
Wnr,ij=β(1+n)mExp(αεij),

Metrics