Abstract

Propagation of Dyakonov–Tamm waves guided by the interface of air and a chiral sculptured thin film (STF) was investigated theoretically. The solution of the dispersion equation showed that the direction of propagation is either unrestricted or almost unrestricted in the interface plane. For very limited ranges of the direction of propagation, multiple Dyakonov–Tamm waves may even exist. These surface waves were theoretically found to be excitable in the Otto prism-coupled configuration by an incident plane wave of either linear polarization state, thereby lending hope for an easy way to observe Dyakonov–Tamm waves experimentally.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Collings, Liquid Crystals: Nature’s Delicate Phase of Matter (Princeton University, 1990), pp. 90–92.
  2. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005), Chap. 9.
  3. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
    [CrossRef]
  4. Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008).
    [CrossRef]
  5. J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
    [CrossRef]
  6. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
    [CrossRef]
  7. S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
    [CrossRef]
  8. Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
  9. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
    [CrossRef]
  10. J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
    [CrossRef]
  11. Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
    [CrossRef]
  12. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).
  13. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
    [CrossRef]
  14. T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
    [CrossRef]
  15. A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” JEOS RP 2, 07021 (2007).
    [CrossRef]
  16. D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Parametric investigation of prism-coupled excitation of Dyakonov–Tamm waves,” J. Opt. Soc. Am. B 30, 2081–2089 (2013).
    [CrossRef]
  17. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [CrossRef]
  18. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
    [CrossRef]
  19. M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).
  20. O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
    [CrossRef]
  21. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
    [CrossRef]
  22. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
    [CrossRef]
  23. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
    [CrossRef]
  24. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
    [CrossRef]
  25. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  26. The Turbadar–Kretschmann–Raether configuration is commonly known as either the Kretschmann or the Kretschmann–Raether configuration in the literature on surface plasmonics; however, it is appropriate to give credit to Turbadar who had anticipated the 1968 papers of both Otto [25] and Kretschmann and Raether [27] nine years earlier [28], but had not used the word “plasmon.”
  27. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  28. T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
  29. M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
    [CrossRef]
  30. Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).
  31. I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely-deposited films of tantalum oxide, titanium oxide and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]

2013 (3)

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Parametric investigation of prism-coupled excitation of Dyakonov–Tamm waves,” J. Opt. Soc. Am. B 30, 2081–2089 (2013).
[CrossRef]

M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
[CrossRef]

2012 (1)

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

2011 (1)

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

2010 (1)

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

2009 (2)

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

2008 (2)

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008).
[CrossRef]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

2007 (3)

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” JEOS RP 2, 07021 (2007).
[CrossRef]

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

2006 (2)

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

2001 (1)

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

2000 (1)

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

1999 (1)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

1998 (1)

1988 (1)

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

1977 (1)

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

1959 (1)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Artigas, D.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Chen, A.

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Collings, P. J.

P. J. Collings, Liquid Crystals: Nature’s Delicate Phase of Matter (Princeton University, 1990), pp. 90–92.

Crasovan, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

Crasovan, L.-C.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

D’yakonov, M. I.

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).

Devender,

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

Dushkina, N.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Faryad, M.

Fonash, S. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

Freeman, W. L.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Geddes, J. B.

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

Gilani, T. H.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Hazel, J.

Hodgkinson, I. J.

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely-deposited films of tantalum oxide, titanium oxide and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

Hong, C.-S.

Horn, M. W.

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

Huang, T. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

Hwangbo, C. K.

Jaluria, Y.

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

Johansen, S. K.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Lakhtakia, A.

M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
[CrossRef]

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Parametric investigation of prism-coupled excitation of Dyakonov–Tamm waves,” J. Opt. Soc. Am. B 30, 2081–2089 (2013).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” JEOS RP 2, 07021 (2007).
[CrossRef]

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005), Chap. 9.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Liang, H.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

Liou, J.

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

Liu, J.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Liu, Y. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

Mackay, T. G.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

McCall, M. W.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005), Chap. 9.

Mihalache, D.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Numan, M. Z.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Park, Y. J.

Polo, J. A.

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” JEOS RP 2, 07021 (2007).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Pulsifer, D. P.

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Parametric investigation of prism-coupled excitation of Dyakonov–Tamm waves,” J. Opt. Soc. Am. B 30, 2081–2089 (2013).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

Pursel, S. M.

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

Sherwin, J. A.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Shi, J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

Sobahan, K. M. A.

Swiontek, S. E.

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

Takayama, O.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Talwar, D. N.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Torner, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Turbadar, T.

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).

Wu, Q.

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Wu, Q. h.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely-deposited films of tantalum oxide, titanium oxide and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

Xu, J.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

You, G.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Zhang, F.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

Zhang, J. D.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Zhu, Y.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (1)

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Electromagnetics (1)

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Electron. Lett. (1)

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

J. Mod. Opt. (1)

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[CrossRef]

JEOS RP (1)

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” JEOS RP 2, 07021 (2007).
[CrossRef]

Opt. Commun. (3)

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. h. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
[CrossRef]

Opt. Eng. (2)

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

Proc. Phys. Soc. (1)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).

Sci. Rep. (1)

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

Sens. Actuators B (2)

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

Sov. Phys. JETP (1)

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other (5)

The Turbadar–Kretschmann–Raether configuration is commonly known as either the Kretschmann or the Kretschmann–Raether configuration in the literature on surface plasmonics; however, it is appropriate to give credit to Turbadar who had anticipated the 1968 papers of both Otto [25] and Kretschmann and Raether [27] nine years earlier [28], but had not used the word “plasmon.”

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

P. J. Collings, Liquid Crystals: Nature’s Delicate Phase of Matter (Princeton University, 1990), pp. 90–92.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005), Chap. 9.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scanning electron micrograph of a chiral STF made by thermal evaporation of zinc selenide in our laboratory.

Fig. 2.
Fig. 2.

Schematic of the canonical boundary-value problem of the propagation of a Dyakonov–Tamm wave guided by the interface of two half-spaces, one occupied by air and the other by a chiral STF.

Fig. 3.
Fig. 3.

Relative wavenumbers q/k0 found by solving the canonical boundary-value problem when (a) Ω=150nm and (b) Ω=150nm; k0 is the free-space wavenumber.

Fig. 4.
Fig. 4.

Relative wavenumbers q/k0 found by solving the canonical boundary-value problem when (a) ψ=0° and (b) ψ=45°.

Fig. 5.
Fig. 5.

Schematic of the prism-coupled configuration to study the excitation of the Dyakonov–Tamm waves. Since nprismsinθinc=nsinθtr, nprism>0, n>0, and θinc[0°,90°), it is possible that θtr is a complex angle.

Fig. 6.
Fig. 6.

Values of the incidence angle θDT=sin1(q/k0nprism) as a function of ψ when a Dyakonov–Tamm wave can be excited using a prism of refractive index nprism=2.6.

Fig. 7.
Fig. 7.

Absorptances (a) Ap and (b) As as functions of the incidence angle θ when nprism=2.6, La=150nm, Ω=150nm, χv=20°, and ψ=45°. The peak in the plots of Ap and As at θinc34.32° represents the excitation of a Dyakonov–Tamm wave guided by the air/chiral-STF interface.

Fig. 8.
Fig. 8.

Reflectances for (a) p-polarized incidence and (b) s-polarized incidence as functions of the incidence angle θ when nprism=n=2.6, La=150nm, Ω=150nm, χv=20°, Np=6, and ψ=45°.

Fig. 9.
Fig. 9.

Cartesian components of the time-averaged Poynting vector as functions of z when θinc=34.32°, nprism=n=2.6, Np=6, La=150nm, Ω=150nm, χv=20°, and ψ=45°. The solid vertical line indicates the air/chiral-STF interface. For computations, the magnitude of the incident electric field phasor was taken to be unity.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϵ̳ChiSTF(z,ω)=ϵ0z(z)·y·ϵ̳ref°(ω)·y1·z1(z),z>0,
z(z)=(uxux+uyuy)cos(πz/Ω)+(uyuxuxuy)sin(πz/Ω)+uzuzy=(uxux+uzuz)cosχ+(uzuxuxuz)sinχ+uyuyϵ̳ref°(ω)=ϵa(ω)uzuz+ϵb(ω)uxux+ϵc(ω)uyuy};
ϵa=[1.0443+2.7394(2χvπ)1.3697(2χvπ)2]2ϵb=[1.6765+1.5649(2χvπ)0.7825(2χvπ)]2ϵc=[1.3586+2.1109(2χvπ)1.0554(2χvπ)2]2χ=tan1(2.8818tanχv)}
ϵ̳ChiSTF(z,ω)=ϵ0z(z)·y·ϵ̳ref°·(ω)·y1·z1(z),La<z<LΣ,
z(z)=(uxux+uyuy)cos[π(zLa)/Ω]+(uyuxuxuy)sin[π(zLa)/Ω]+uzuz
LChiSTF=LΣLa=2NpΩ,Np{1,2,3,}.

Metrics