D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vuckovic, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).

[CrossRef]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

S. Nixon, L. Ge, and J. Yang, “Stability analysis for soliton in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012).

[CrossRef]

F. Nazari, M. Nazari, and M. K. Moravvej-Farshi, “A 2×2 spatial optical switch based on PT-symmetry,” Opt. Lett. 36, 4368–4370 (2011).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106, 093902 (2011).

[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fibre laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).

[CrossRef]

J. Čtyroký, V. Kuzmiak, and S. Eyderman, “Waveguide structures with antisymmetric gain/loss profile,” Opt. Express 18, 21585–21593 (2010).

[CrossRef]

T. Kottos, “Broken symmetry makes light works,” Nat. Phys. 6, 166–167 (2010).

[CrossRef]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010).

[CrossRef]

A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, “Nonlinear suppression of time reversals in PT-symmetric optical couplers,” Phys. Rev. A 82, 043818 (2010).

[CrossRef]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

A. Mostafazadeh, “Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies,” Phys. Rev. Lett. 102, 220402 (2009).

[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).

[CrossRef]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008).

[CrossRef]

M. Greenberg and M. Orenstein, “Optical unidirectional devices by complex spatial single sideband perturbation,” IEEE J. Quantum Electron. 41, 1013–1023 (2005).

[CrossRef]

M. Kulishov, J. M. Laniel, N. Belanger, J. Azana, and D. V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13, 3068–3078 (2005).

M. Greenberg and M. Orenstein, “Unidirectional complex grating assisted couplers,” Opt. Express 12, 4013–4018 (2004).

[CrossRef]

V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material modes in TLM-part 3: material with nonlinear properties,” IEEE Trans. Antennas Propag. 50, 997–1004 (2002).

[CrossRef]

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002).

[CrossRef]

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase shifted fibre Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).

[CrossRef]

C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys. 40, 2201–2229 (1999).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material model in TLM-part I: material with frequency-dependent properties,” IEEE Trans. Antennas Propag. 47, 1528–1534 (1999).

M. Krumpholz, C. Huber, and P. Russer, “A field theoretical comparison of FDTD and TLM,” IEEE Trans. Microw. Theory Tech. 43, 1935–1950 (1995).

[CrossRef]

P. B. Johns, “On the relationship between TLM and finite-difference methods for Maxwell’s equation,” IEEE Trans. Microw. Theory Tech. 35, 60–61 (1987).

W. J. R. Hoefer, “The transmission-line matrix method—theory and applications,” IEEE Trans. Microw. Theory Tech. 33, 882–893 (1985).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vuckovic, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).

[CrossRef]

C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys. 40, 2201–2229 (1999).

[CrossRef]

V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).

S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Time domain modeling of all-optical switch based on PT-symmetric Bragg grating,” in Proceedings of the 29th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Monterey, California, March20–28, 2013 (ACES, 2013), pp. 693–698.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys. 40, 2201–2229 (1999).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

L. Chen, R. Li, N. Yang, and L. Li, “Optical modes in PT-symmetric double channel waveguides,” in Proceedings of the Romanian Academy, Series A (2012), Vol. X, pp. 1–10.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase shifted fibre Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).

[CrossRef]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106, 093902 (2011).

[CrossRef]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010).

[CrossRef]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008).

[CrossRef]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material modes in TLM-part 3: material with nonlinear properties,” IEEE Trans. Antennas Propag. 50, 997–1004 (2002).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material model in TLM-part I: material with frequency-dependent properties,” IEEE Trans. Antennas Propag. 47, 1528–1534 (1999).

C. Christopoulos, The Transmission Line Modeling Method: TLM (IEEE, 1995).

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010).

[CrossRef]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008).

[CrossRef]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).

[CrossRef]

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vuckovic, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

S. Nixon, L. Ge, and J. Yang, “Stability analysis for soliton in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012).

[CrossRef]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106, 093902 (2011).

[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).

[CrossRef]

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002).

[CrossRef]

W. J. R. Hoefer, “The transmission-line matrix method—theory and applications,” IEEE Trans. Microw. Theory Tech. 33, 882–893 (1985).

[CrossRef]

M. Krumpholz, C. Huber, and P. Russer, “A field theoretical comparison of FDTD and TLM,” IEEE Trans. Microw. Theory Tech. 43, 1935–1950 (1995).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

P. B. Johns, “On the relationship between TLM and finite-difference methods for Maxwell’s equation,” IEEE Trans. Microw. Theory Tech. 35, 60–61 (1987).

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, “Nonlinear suppression of time reversals in PT-symmetric optical couplers,” Phys. Rev. A 82, 043818 (2010).

[CrossRef]

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

T. Kottos, “Broken symmetry makes light works,” Nat. Phys. 6, 166–167 (2010).

[CrossRef]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010).

[CrossRef]

M. Krumpholz, C. Huber, and P. Russer, “A field theoretical comparison of FDTD and TLM,” IEEE Trans. Microw. Theory Tech. 43, 1935–1950 (1995).

[CrossRef]

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002).

[CrossRef]

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

L. Chen, R. Li, N. Yang, and L. Li, “Optical modes in PT-symmetric double channel waveguides,” in Proceedings of the Romanian Academy, Series A (2012), Vol. X, pp. 1–10.

L. Chen, R. Li, N. Yang, and L. Li, “Optical modes in PT-symmetric double channel waveguides,” in Proceedings of the Romanian Academy, Series A (2012), Vol. X, pp. 1–10.

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vuckovic, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).

[CrossRef]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008).

[CrossRef]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).

[CrossRef]

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase shifted fibre Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).

[CrossRef]

C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys. 40, 2201–2229 (1999).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase shifted fibre Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).

[CrossRef]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

A. Mostafazadeh, “Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies,” Phys. Rev. Lett. 102, 220402 (2009).

[CrossRef]

A. Mostafazadeh, “Invisibility and PT-symmetry,” arXiv:1206.0116 (2012).

S. Nixon, L. Ge, and J. Yang, “Stability analysis for soliton in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012).

[CrossRef]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material modes in TLM-part 3: material with nonlinear properties,” IEEE Trans. Antennas Propag. 50, 997–1004 (2002).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material model in TLM-part I: material with frequency-dependent properties,” IEEE Trans. Antennas Propag. 47, 1528–1534 (1999).

V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Time domain modeling of all-optical switch based on PT-symmetric Bragg grating,” in Proceedings of the 29th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Monterey, California, March20–28, 2013 (ACES, 2013), pp. 693–698.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010).

[CrossRef]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

M. Krumpholz, C. Huber, and P. Russer, “A field theoretical comparison of FDTD and TLM,” IEEE Trans. Microw. Theory Tech. 43, 1935–1950 (1995).

[CrossRef]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

M. N. O. Sadiku, “A comparison of time-domain finite difference (FDTD) and transmission-line modeling (TLM) methods,” in Proceedings of the IEEE Southeastcon 2000 (IEEE, 2000), pp. 19–22.

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).

S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Time domain modeling of all-optical switch based on PT-symmetric Bragg grating,” in Proceedings of the 29th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Monterey, California, March20–28, 2013 (ACES, 2013), pp. 693–698.

A. E. Siegman, Lasers (University Science Books, 1986).

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106, 093902 (2011).

[CrossRef]

A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, “Nonlinear suppression of time reversals in PT-symmetric optical couplers,” Phys. Rev. A 82, 043818 (2010).

[CrossRef]

S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Time domain modeling of all-optical switch based on PT-symmetric Bragg grating,” in Proceedings of the 29th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Monterey, California, March20–28, 2013 (ACES, 2013), pp. 693–698.

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material modes in TLM-part 3: material with nonlinear properties,” IEEE Trans. Antennas Propag. 50, 997–1004 (2002).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material model in TLM-part I: material with frequency-dependent properties,” IEEE Trans. Antennas Propag. 47, 1528–1534 (1999).

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).

[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vuckovic, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).

[CrossRef]

V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).

S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Time domain modeling of all-optical switch based on PT-symmetric Bragg grating,” in Proceedings of the 29th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Monterey, California, March20–28, 2013 (ACES, 2013), pp. 693–698.

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002).

[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).

[CrossRef]

A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, “Nonlinear suppression of time reversals in PT-symmetric optical couplers,” Phys. Rev. A 82, 043818 (2010).

[CrossRef]

S. Nixon, L. Ge, and J. Yang, “Stability analysis for soliton in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012).

[CrossRef]

L. Chen, R. Li, N. Yang, and L. Li, “Optical modes in PT-symmetric double channel waveguides,” in Proceedings of the Romanian Academy, Series A (2012), Vol. X, pp. 1–10.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

M. Greenberg and M. Orenstein, “Optical unidirectional devices by complex spatial single sideband perturbation,” IEEE J. Quantum Electron. 41, 1013–1023 (2005).

[CrossRef]

A. Majumdar, M. Bajcsy, D. Englund, and J. Vuckovic, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012).

[CrossRef]

V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase shifted fibre Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material modes in TLM-part 3: material with nonlinear properties,” IEEE Trans. Antennas Propag. 50, 997–1004 (2002).

[CrossRef]

J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material model in TLM-part I: material with frequency-dependent properties,” IEEE Trans. Antennas Propag. 47, 1528–1534 (1999).

M. Krumpholz, C. Huber, and P. Russer, “A field theoretical comparison of FDTD and TLM,” IEEE Trans. Microw. Theory Tech. 43, 1935–1950 (1995).

[CrossRef]

P. B. Johns, “On the relationship between TLM and finite-difference methods for Maxwell’s equation,” IEEE Trans. Microw. Theory Tech. 35, 60–61 (1987).

W. J. R. Hoefer, “The transmission-line matrix method—theory and applications,” IEEE Trans. Microw. Theory Tech. 33, 882–893 (1985).

[CrossRef]

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002).

[CrossRef]

C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys. 40, 2201–2229 (1999).

[CrossRef]

J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012).

[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).

[CrossRef]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013).

[CrossRef]

T. Kottos, “Broken symmetry makes light works,” Nat. Phys. 6, 166–167 (2010).

[CrossRef]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010).

[CrossRef]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[CrossRef]

J. Čtyroký, V. Kuzmiak, and S. Eyderman, “Waveguide structures with antisymmetric gain/loss profile,” Opt. Express 18, 21585–21593 (2010).

[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fibre laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).

[CrossRef]

M. Greenberg and M. Orenstein, “Unidirectional complex grating assisted couplers,” Opt. Express 12, 4013–4018 (2004).

[CrossRef]

M. Kulishov, J. M. Laniel, N. Belanger, J. Azana, and D. V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13, 3068–3078 (2005).

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).

[CrossRef]

F. Nazari, M. Nazari, and M. K. Moravvej-Farshi, “A 2×2 spatial optical switch based on PT-symmetry,” Opt. Lett. 36, 4368–4370 (2011).

[CrossRef]

S. Nixon, L. Ge, and J. Yang, “Stability analysis for soliton in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012).

[CrossRef]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010).

[CrossRef]

A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, “Nonlinear suppression of time reversals in PT-symmetric optical couplers,” Phys. Rev. A 82, 043818 (2010).

[CrossRef]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008).

[CrossRef]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106, 093902 (2011).

[CrossRef]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).

[CrossRef]

A. Mostafazadeh, “Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies,” Phys. Rev. Lett. 102, 220402 (2009).

[CrossRef]

A. E. Siegman, Lasers (University Science Books, 1986).

C. Christopoulos, The Transmission Line Modeling Method: TLM (IEEE, 1995).

A. Mostafazadeh, “Invisibility and PT-symmetry,” arXiv:1206.0116 (2012).

L. Chen, R. Li, N. Yang, and L. Li, “Optical modes in PT-symmetric double channel waveguides,” in Proceedings of the Romanian Academy, Series A (2012), Vol. X, pp. 1–10.

S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Time domain modeling of all-optical switch based on PT-symmetric Bragg grating,” in Proceedings of the 29th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Monterey, California, March20–28, 2013 (ACES, 2013), pp. 693–698.

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).

M. N. O. Sadiku, “A comparison of time-domain finite difference (FDTD) and transmission-line modeling (TLM) methods,” in Proceedings of the IEEE Southeastcon 2000 (IEEE, 2000), pp. 19–22.