Abstract

We demonstrate the generation of an ultralow-repetition-rate pulse train with a repetition rate of 19.6 kHz by passive mode-locking of an optoelectronic oscillator. The pulse-to-pulse timing jitter equals 0.06 ppm of the repetition time of the pulses. No significant dependence of pulse duration, pulse waveform, and timing jitter was observed when the cavity length was changed from 150 to 10,400 m. A simple theoretical model for calculating the dependence of the jitter on the cavity length is given.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Shrader and V. G. Hansen, “MTI radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 2008), pp. 2.12–2.100.
  2. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” IEEE Electron. Lett. 28, 67–68 (1992).
    [CrossRef]
  3. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
    [CrossRef]
  4. R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
    [CrossRef]
  5. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997).
    [CrossRef]
  6. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16, 21936–21941 (2008).
    [CrossRef]
  7. S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, “Mode-locked fibre lasers with high-energy pulses,” in Laser Systems for Applications, K. Jakubczak, ed. (InTech, 2011), pp. 39–58.
  8. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Ultralow-repetition-rate, high-energy, polarization-maintaining, Er-doped, ultrashort-pulse fiber laser using single-wall-carbon-nanotube saturable absorber,” Opt. Express 18, 20673–20680 (2010).
    [CrossRef]
  9. J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microw. Wirel. Compon. Lett. 11, 208–210 (2001).
    [CrossRef]
  10. F. Zito, D. Pepe, and D. Zito, “UWB CMOS monocycle pulse generator,” IEEE Trans. Circuits Syst. I Reg. Papers 57, 2654–2664 (2010).
    [CrossRef]
  11. L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
    [CrossRef]
  12. E. C. Levy and M. Horowitz, “Single-cycle radio-frequency pulse generation by an optoelectronic oscillator,” Opt. Express 19, 17599–17608 (2011).
    [CrossRef]
  13. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A12O3 laser,” Opt. Lett. 18, 1822–1824 (1993).
    [CrossRef]
  14. G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, “Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator,” Opt. Lett. 21, 1055–1057 (1996).
    [CrossRef]
  15. Agilent Technologies Inc., “Infiniium DCA-J Agilent 86100C technical specification,” http://cp.literature.agilent.com/litweb/pdf/5989-0278EN.pdf .
  16. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
    [CrossRef]
  17. O. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, and W. Zhou, “Spontaneous inelastic Rayleigh scattering in optical fibers,” Opt. Lett. 38, 549–551 (2013).
    [CrossRef]

2013 (1)

2011 (2)

E. C. Levy and M. Horowitz, “Single-cycle radio-frequency pulse generation by an optoelectronic oscillator,” Opt. Express 19, 17599–17608 (2011).
[CrossRef]

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
[CrossRef]

2010 (2)

2008 (1)

2006 (1)

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[CrossRef]

2001 (1)

J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microw. Wirel. Compon. Lett. 11, 208–210 (2001).
[CrossRef]

1997 (1)

1996 (1)

1993 (2)

1992 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” IEEE Electron. Lett. 28, 67–68 (1992).
[CrossRef]

Barad, Y.

Bekker, A.

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
[CrossRef]

Belot, D.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Bouma, B. E.

Cahill, J. P.

Cattenoz, R.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Chabert, L.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Devaucelle, C.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Docherty, A.

Fedotov, Y.

Fischer, B.

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
[CrossRef]

Fujimoto, J. G.

Gat, O.

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
[CrossRef]

Gibson, F.

Gibson, G. N.

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” IEEE Electron. Lett. 28, 67–68 (1992).
[CrossRef]

Hansen, V. G.

W. W. Shrader and V. G. Hansen, “MTI radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 2008), pp. 2.12–2.100.

Haus, H. A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Helal, D.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Horowitz, M.

Itoga, E.

Itoh, K.

Kataura, H.

Klank, R.

Kobtsev, S.

Kobtsev, S. M.

S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, “Mode-locked fibre lasers with high-energy pulses,” in Laser Systems for Applications, K. Jakubczak, ed. (InTech, 2011), pp. 39–58.

Kukarin, S.

Kukarin, S. V.

S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, “Mode-locked fibre lasers with high-energy pulses,” in Laser Systems for Applications, K. Jakubczak, ed. (InTech, 2011), pp. 39–58.

Lee, J. S.

J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microw. Wirel. Compon. Lett. 11, 208–210 (2001).
[CrossRef]

Levy, E. C.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Menyuk, C. R.

Nguyen, C.

J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microw. Wirel. Compon. Lett. 11, 208–210 (2001).
[CrossRef]

Nishizawa, N.

Okusaga, O.

Paye, J.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” IEEE Electron. Lett. 28, 67–68 (1992).
[CrossRef]

Pepe, D.

F. Zito, D. Pepe, and D. Zito, “UWB CMOS monocycle pulse generator,” IEEE Trans. Circuits Syst. I Reg. Papers 57, 2654–2664 (2010).
[CrossRef]

Ramaswamy, M.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” IEEE Electron. Lett. 28, 67–68 (1992).
[CrossRef]

Rinaldi, N.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Sakakibara, Y.

Senoo, Y.

Shrader, W. W.

W. W. Shrader and V. G. Hansen, “MTI radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 2008), pp. 2.12–2.100.

Silberberg, Y.

Smaini, L.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Smirnov, S. V.

S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, “Mode-locked fibre lasers with high-energy pulses,” in Laser Systems for Applications, K. Jakubczak, ed. (InTech, 2011), pp. 39–58.

Smulakovsky, V.

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
[CrossRef]

Stoecklin, C.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Sumimura, K.

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Tinella, C.

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

Turitsyn, S. K.

S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, “Mode-locked fibre lasers with high-energy pulses,” in Laser Systems for Applications, K. Jakubczak, ed. (InTech, 2011), pp. 39–58.

Ulman, M.

Weill, R.

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
[CrossRef]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Zhou, W.

Zito, D.

F. Zito, D. Pepe, and D. Zito, “UWB CMOS monocycle pulse generator,” IEEE Trans. Circuits Syst. I Reg. Papers 57, 2654–2664 (2010).
[CrossRef]

Zito, F.

F. Zito, D. Pepe, and D. Zito, “UWB CMOS monocycle pulse generator,” IEEE Trans. Circuits Syst. I Reg. Papers 57, 2654–2664 (2010).
[CrossRef]

IEEE Electron. Lett. (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” IEEE Electron. Lett. 28, 67–68 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

IEEE J. Solid-State Circuits (1)

L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microw. Wirel. Compon. Lett. 11, 208–210 (2001).
[CrossRef]

IEEE Trans. Circuits Syst. I Reg. Papers (1)

F. Zito, D. Pepe, and D. Zito, “UWB CMOS monocycle pulse generator,” IEEE Trans. Circuits Syst. I Reg. Papers 57, 2654–2664 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (2)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[CrossRef]

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011).
[CrossRef]

Other (3)

W. W. Shrader and V. G. Hansen, “MTI radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 2008), pp. 2.12–2.100.

S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, “Mode-locked fibre lasers with high-energy pulses,” in Laser Systems for Applications, K. Jakubczak, ed. (InTech, 2011), pp. 39–58.

Agilent Technologies Inc., “Infiniium DCA-J Agilent 86100C technical specification,” http://cp.literature.agilent.com/litweb/pdf/5989-0278EN.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic description of the experimental setup. LD is a CW semiconductor laser; MZM is a Mach–Zehnder amplitude modulator; G 1 , G 2 , and G 3 are similar RF amplifiers with a small signal gain of 16 dB and 3 dB cutoff frequencies of 30 kHz and 4 GHz; PD 1 is a photodetector; L c is a long fiber that determines the repetition rate; P is an RF power meter; and VVA is a voltage-controlled variable RF attenuator. To measure the pulse-to-pulse timing jitter by using a sampling oscilloscope (Agilent DCA-J 86100C), a fiber of length L d that is slightly shorter than L c and a second photodetector PD 2 are added to obtain a trigger signal to the sampling oscilloscope.

Fig. 2.
Fig. 2.

(a) Time domain waveforms and (b) the corresponding spectra of pulses at the input of the MZM that were generated by a passively mode-locked OEO with a cavity length of L c = 150 , 2200, 5370, and 10,400 m (black solid, red dashed, blue dotted, orange dashed–dotted curves, respectively) measured by a sampling oscilloscope and an RF spectrum analyzer with a resolution bandwidth (RBW) of 100 kHz.

Fig. 3.
Fig. 3.

Spectrum of the generated pulse train for a cavity length of L c = 10 , 400 m that was measured by an RF spectrum analyzer (a) at low frequencies and (b) around a frequency of 350 MHz. The RBW was set to 10 Hz. The noise floor at frequencies < 100 kH z is strongly affected by the internal noise of the spectrum analyzer.

Fig. 4.
Fig. 4.

Time domain waveforms of a single-cycle pulse with a carrier frequency of about 380 MHz generated by an OEO with a cavity length of L c = 150 , 2200, and 10,400 m (black solid, red dashed, orange dashed–dotted curves, respectively). For obtaining the single-cycle pulses, the RF amplifier G 3 in Fig. 1 was replaced by the amplifier used in the experiment described in Ref. [12].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ τ = 2 E 0 G ρ N Z 2 τ 2 τ 2 t 2 f 2 ( t ) d t ,

Metrics