Abstract

A frequency-stabilized ultraviolet laser system, locked to the thallium resonant transition at 377.5 nm, was demonstrated using a novel bichromatic spectroscopy technique for tuning the zero-crossing laser-lock point. The 377.5 nm 6P1/27S1/2 transition is important for thallium laser cooling and trapping experiments. The pressure shift, owing to the high pressure buffer gas of the hollow-cathode lamp, was observed using an atomic beam resonance as the reference. Such a shift was corrected by adjusting the peak ratio of the two Doppler-free saturation profiles that resulted from the two pumping beams with a 130 MHz frequency difference. The resulting frequency stability of the ultraviolet laser was 0.5 MHz at a 0.1 s integration time. This scheme is compact and versatile for stabilizing laser systems, which require a sub-megahertz stability and frequency tunability.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Ross and B. Sonntag, “High temperature metal atom beam sources,” Rev. Sci. Instrum. 66, 4409–4433 (1995).
    [CrossRef]
  2. G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
    [CrossRef]
  3. C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
    [CrossRef]
  4. T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
    [CrossRef]
  5. W. DeGraffenreid, S. C. Campbell, and C. J. Sansonetti, “Reference lines in the optogalvanic spectra of uranium and thorium in the wavelength range 422 to 462  nm,” J. Opt. Soc. Am. B 29, 1580–1583 (2012).
    [CrossRef]
  6. N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “High-resolution Fabry–Pérot interferometric emission measurements of the 535.046  nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107–113 (2007).
    [CrossRef]
  7. J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
    [CrossRef]
  8. C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. Part 2 42, L754–L756 (2003).
    [CrossRef]
  9. U. Dammalapati, I. Norris, and E. Riis, “Saturated absorption spectroscopy of calcium in a hollow-cathode lamp,” J. Phys. B 42, 165001 (2009).
    [CrossRef]
  10. H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz, “Doppler-free frequency-modulation spectroscopy of atomic erbium in a hollow-cathode discharge cell,” Appl. Phys. B 106, 405–408 (2012).
    [CrossRef]
  11. T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
    [CrossRef]
  12. W. R. Hindmarsh, “Collision broadening and shift in the resonance line of calcium,” Mon. Not. R. Astron. Soc. 119, 21–25 (1959).
  13. W. R. Hindmarsh, “Collision broadening and shift in the λ6573 line of calcium,” Mon. Not. R. Astron. Soc. 121, 48 (1960).
  14. E. D. van Ooijen, G. Katgert, and P. van der Straten, “Laser frequency stabilization using Doppler-free bichromatic spectroscopy,” Appl. Phys. B 79, 57–59 (2004).
    [CrossRef]
  15. C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948–1950 (2004).
    [CrossRef]
  16. J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
    [CrossRef]
  17. I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
    [CrossRef]
  18. W. Demtröder, Laser Spectroscopy: Experimental Techniques, 4th ed. (Springer-Verlag, 2008).
  19. J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
    [CrossRef]
  20. O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, “Atomic gallium laser spectroscopy with violet/blue diode lasers,” Appl. Phys. B 77, 809–815 (2003).
    [CrossRef]
  21. P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
    [CrossRef]
  22. R. S. Dygdaa, R. Bobkowski, and E. Lisicki, “Broadening and shift of the resonance line of thallium due to collisions with neon and argon atoms,” J. Phys. B 22, 1563–1572 (1989).
    [CrossRef]

2012

H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz, “Doppler-free frequency-modulation spectroscopy of atomic erbium in a hollow-cathode discharge cell,” Appl. Phys. B 106, 405–408 (2012).
[CrossRef]

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

W. DeGraffenreid, S. C. Campbell, and C. J. Sansonetti, “Reference lines in the optogalvanic spectra of uranium and thorium in the wavelength range 422 to 462  nm,” J. Opt. Soc. Am. B 29, 1580–1583 (2012).
[CrossRef]

2011

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

2009

U. Dammalapati, I. Norris, and E. Riis, “Saturated absorption spectroscopy of calcium in a hollow-cathode lamp,” J. Phys. B 42, 165001 (2009).
[CrossRef]

2007

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “High-resolution Fabry–Pérot interferometric emission measurements of the 535.046  nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107–113 (2007).
[CrossRef]

2004

E. D. van Ooijen, G. Katgert, and P. van der Straten, “Laser frequency stabilization using Doppler-free bichromatic spectroscopy,” Appl. Phys. B 79, 57–59 (2004).
[CrossRef]

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948–1950 (2004).
[CrossRef]

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

2003

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. Part 2 42, L754–L756 (2003).
[CrossRef]

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
[CrossRef]

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, “Atomic gallium laser spectroscopy with violet/blue diode lasers,” Appl. Phys. B 77, 809–815 (2003).
[CrossRef]

1999

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

1995

K. J. Ross and B. Sonntag, “High temperature metal atom beam sources,” Rev. Sci. Instrum. 66, 4409–4433 (1995).
[CrossRef]

1989

R. S. Dygdaa, R. Bobkowski, and E. Lisicki, “Broadening and shift of the resonance line of thallium due to collisions with neon and argon atoms,” J. Phys. B 22, 1563–1572 (1989).
[CrossRef]

1983

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

1981

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

1960

W. R. Hindmarsh, “Collision broadening and shift in the λ6573 line of calcium,” Mon. Not. R. Astron. Soc. 121, 48 (1960).

1959

W. R. Hindmarsh, “Collision broadening and shift in the resonance line of calcium,” Mon. Not. R. Astron. Soc. 119, 21–25 (1959).

Aoki, T.

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

Arimondo, E.

O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, “Atomic gallium laser spectroscopy with violet/blue diode lasers,” Appl. Phys. B 77, 809–815 (2003).
[CrossRef]

Bobkowski, R.

R. S. Dygdaa, R. Bobkowski, and E. Lisicki, “Broadening and shift of the resonance line of thallium due to collisions with neon and argon atoms,” J. Phys. B 22, 1563–1572 (1989).
[CrossRef]

Bourouis, R.

H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz, “Doppler-free frequency-modulation spectroscopy of atomic erbium in a hollow-cathode discharge cell,” Appl. Phys. B 106, 405–408 (2012).
[CrossRef]

Bowers, C. J.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Brammer, H.

H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz, “Doppler-free frequency-modulation spectroscopy of atomic erbium in a hollow-cathode discharge cell,” Appl. Phys. B 106, 405–408 (2012).
[CrossRef]

Budker, D.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Campbell, S. C.

Cancio, P.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Chen, H.-C.

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

Chen, S.-E.

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

Chen, T.-L.

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

Chien, M.-H.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948–1950 (2004).
[CrossRef]

Chou, C.-C.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948–1950 (2004).
[CrossRef]

Dammalapati, U.

U. Dammalapati, I. Norris, and E. Riis, “Saturated absorption spectroscopy of calcium in a hollow-cathode lamp,” J. Phys. B 42, 165001 (2009).
[CrossRef]

Dasari, R. R.

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

DeGraffenreid, W.

DeMille, D.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Experimental Techniques, 4th ed. (Springer-Verlag, 2008).

Drullinger, R.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Dygdaa, R. S.

R. S. Dygdaa, R. Bobkowski, and E. Lisicki, “Broadening and shift of the resonance line of thallium due to collisions with neon and argon atoms,” J. Phys. B 22, 1563–1572 (1989).
[CrossRef]

Erez, G.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Fan, I.

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

Fazio, B.

O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, “Atomic gallium laser spectroscopy with violet/blue diode lasers,” Appl. Phys. B 77, 809–815 (2003).
[CrossRef]

Feld, M. S.

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

Ferrari, G.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Flambaum, V. V.

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

Forber, R. A.

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

Freedman, S. J.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Ginges, J. S. M.

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

Giusfredi, G.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Gucciardi, P. G.

O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, “Atomic gallium laser spectroscopy with violet/blue diode lasers,” Appl. Phys. B 77, 809–815 (2003).
[CrossRef]

Gwinner, G.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Hindmarsh, W. R.

W. R. Hindmarsh, “Collision broadening and shift in the λ6573 line of calcium,” Mon. Not. R. Astron. Soc. 121, 48 (1960).

W. R. Hindmarsh, “Collision broadening and shift in the resonance line of calcium,” Mon. Not. R. Astron. Soc. 119, 21–25 (1959).

Huang, P.-C.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948–1950 (2004).
[CrossRef]

Katgert, G.

E. D. van Ooijen, G. Katgert, and P. van der Straten, “Laser frequency stabilization using Doppler-free bichromatic spectroscopy,” Appl. Phys. B 79, 57–59 (2004).
[CrossRef]

Kim, E. B.

Kim, J. I.

Lavi, S.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Lien, Y.-H.

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

Lin, C.-Y.

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

Lin, T.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948–1950 (2004).
[CrossRef]

Liran, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Lisicki, E.

R. S. Dygdaa, R. Bobkowski, and E. Lisicki, “Broadening and shift of the resonance line of thallium due to collisions with neon and argon atoms,” J. Phys. B 22, 1563–1572 (1989).
[CrossRef]

Liu, Y.-S.

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

Liu, Y.-W.

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

Marago, O. M.

O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, “Atomic gallium laser spectroscopy with violet/blue diode lasers,” Appl. Phys. B 77, 809–815 (2003).
[CrossRef]

Miron, E.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Murnick, D. E.

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

Norris, I.

U. Dammalapati, I. Norris, and E. Riis, “Saturated absorption spectroscopy of calcium in a hollow-cathode lamp,” J. Phys. B 42, 165001 (2009).
[CrossRef]

Omenetto, N.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “High-resolution Fabry–Pérot interferometric emission measurements of the 535.046  nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107–113 (2007).
[CrossRef]

Oreg, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Pappas, P. G.

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

Park, C. Y.

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. Part 2 42, L754–L756 (2003).
[CrossRef]

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
[CrossRef]

Poli, N.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Prevedelli, M.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Quivers, W. W.

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

Riis, E.

U. Dammalapati, I. Norris, and E. Riis, “Saturated absorption spectroscopy of calcium in a hollow-cathode lamp,” J. Phys. B 42, 165001 (2009).
[CrossRef]

Ross, K. J.

K. J. Ross and B. Sonntag, “High temperature metal atom beam sources,” Rev. Sci. Instrum. 66, 4409–4433 (1995).
[CrossRef]

Sakemi, Y.

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

Sansonetti, C. J.

Shy, J.-T.

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

Smith, B. W.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “High-resolution Fabry–Pérot interferometric emission measurements of the 535.046  nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107–113 (2007).
[CrossRef]

Sonntag, B.

K. J. Ross and B. Sonntag, “High temperature metal atom beam sources,” Rev. Sci. Instrum. 66, 4409–4433 (1995).
[CrossRef]

Stalnaker, J. E.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Strauss, M.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Takemura, N.

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

Taylor, N.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “High-resolution Fabry–Pérot interferometric emission measurements of the 535.046  nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107–113 (2007).
[CrossRef]

Tenenbaum, J.

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

Tino, G. M.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Toninelli, C.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Torii, Y.

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

Ulitzsch, J.

H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz, “Doppler-free frequency-modulation spectroscopy of atomic erbium in a hollow-cathode discharge cell,” Appl. Phys. B 106, 405–408 (2012).
[CrossRef]

Umezawa, K.

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

van der Straten, P.

E. D. van Ooijen, G. Katgert, and P. van der Straten, “Laser frequency stabilization using Doppler-free bichromatic spectroscopy,” Appl. Phys. B 79, 57–59 (2004).
[CrossRef]

van Ooijen, E. D.

E. D. van Ooijen, G. Katgert, and P. van der Straten, “Laser frequency stabilization using Doppler-free bichromatic spectroscopy,” Appl. Phys. B 79, 57–59 (2004).
[CrossRef]

Weitz, M.

H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz, “Doppler-free frequency-modulation spectroscopy of atomic erbium in a hollow-cathode discharge cell,” Appl. Phys. B 106, 405–408 (2012).
[CrossRef]

Winefordner, J. D.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “High-resolution Fabry–Pérot interferometric emission measurements of the 535.046  nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107–113 (2007).
[CrossRef]

Yamanaka, Y.

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

Yeom, J. Y.

Yoon, T. H.

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
[CrossRef]

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. Part 2 42, L754–L756 (2003).
[CrossRef]

Appl. Phys. B

H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz, “Doppler-free frequency-modulation spectroscopy of atomic erbium in a hollow-cathode discharge cell,” Appl. Phys. B 106, 405–408 (2012).
[CrossRef]

E. D. van Ooijen, G. Katgert, and P. van der Straten, “Laser frequency stabilization using Doppler-free bichromatic spectroscopy,” Appl. Phys. B 79, 57–59 (2004).
[CrossRef]

O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, “Atomic gallium laser spectroscopy with violet/blue diode lasers,” Appl. Phys. B 77, 809–815 (2003).
[CrossRef]

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “High-resolution Fabry–Pérot interferometric emission measurements of the 535.046  nm thallium line in a see-through hollow cathode discharge,” Appl. Phys. B 89, 107–113 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

C.-C. Chou, T. Lin, P.-C. Huang, and M.-H. Chien, “Modulation-free laser frequency stabilization to molecular absorption using single acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 16, 1948–1950 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

U. Dammalapati, I. Norris, and E. Riis, “Saturated absorption spectroscopy of calcium in a hollow-cathode lamp,” J. Phys. B 42, 165001 (2009).
[CrossRef]

R. S. Dygdaa, R. Bobkowski, and E. Lisicki, “Broadening and shift of the resonance line of thallium due to collisions with neon and argon atoms,” J. Phys. B 22, 1563–1572 (1989).
[CrossRef]

J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983).
[CrossRef]

J. Phys. Soc. Jpn.

T. Aoki, K. Umezawa, Y. Yamanaka, N. Takemura, Y. Sakemi, and Y. Torii, “A 461  nm laser system and hollow-cathode lamp spectroscopy for magneto-optical trapping of Sr atoms,” J. Phys. Soc. Jpn. 81, 034401 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

C. Y. Park and T. H. Yoon, “Frequency stabilization of injection-locked violet laser diode with doppler-free absorption signal of ytterbium,” Jpn. J. Appl. Phys. Part 2 42, L754–L756 (2003).
[CrossRef]

Mon. Not. R. Astron. Soc.

W. R. Hindmarsh, “Collision broadening and shift in the resonance line of calcium,” Mon. Not. R. Astron. Soc. 119, 21–25 (1959).

W. R. Hindmarsh, “Collision broadening and shift in the λ6573 line of calcium,” Mon. Not. R. Astron. Soc. 121, 48 (1960).

Opt. Lett.

Phys. Rep.

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

Phys. Rev. A

I. Fan, T.-L. Chen, Y.-S. Liu, Y.-H. Lien, J.-T. Shy, and Y.-W. Liu, “Prospects of laser cooling in atomic thallium,” Phys. Rev. A 84, 042504 (2011).
[CrossRef]

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s21S0→5d6s3D1,2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

T.-L. Chen, I. Fan, H.-C. Chen, C.-Y. Lin, S.-E. Chen, J.-T. Shy, and Y.-W. Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium,” Phys. Rev. A 86, 052524 (2012).
[CrossRef]

Phys. Rev. Lett.

P. G. Pappas, R. A. Forber, W. W. Quivers, R. R. Dasari, M. S. Feld, and D. E. Murnick, “Polarized sodium nuclei produced by laser optical-pumping with velocity changing collisions,” Phys. Rev. Lett. 47, 236–239 (1981).
[CrossRef]

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef]

Rev. Sci. Instrum.

K. J. Ross and B. Sonntag, “High temperature metal atom beam sources,” Rev. Sci. Instrum. 66, 4409–4433 (1995).
[CrossRef]

Other

W. Demtröder, Laser Spectroscopy: Experimental Techniques, 4th ed. (Springer-Verlag, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. ABPR, auto-balanced photo receiver; AOM, acousto-optic modulator; BD, beam dump; BS, beam splitters; DAQ, data acquisition; OG, optogalvanic; PI, proportional–integral; PMT, photomultiplier tube; PZT, lead zirconate titanate; SHG, second harmonic generation; VCO, voltage-controlled oscillator.

Fig. 2.
Fig. 2.

Typical UV spectrum of thallium 6P1/2, F=17S1/2, F=1 transition of Tl203 (C) and Tl205 (D), including the optogalvanic spectrum (gray), the saturation absorption spectrum (blue), and the Doppler shift-free laser-induced fluorescence spectrum in the atomic beam system (black). Data show a frequency shift between the spectrum in HCL and the atomic beam. A partial energy diagram (Λ-type three-level) is shown in the inset.

Fig. 3.
Fig. 3.

Tunable laser-lock point of dispersion-like signal in bichromatic spectroscopy. The blue dashed–dotted curve shows the original shape before adjustment and the red solid curve shows the shifted zero-crossing point after adjustment. Upper inset: zoom in of the zero-crossing point. Lower inset: the bichromatic spectrum.

Fig. 4.
Fig. 4.

Allen deviation. Inset: recording of the error signal (red) and fluorescence signal fluctuation (black) with the locked laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ωzero=ω0+Δ42σ2Δln(A0A1).

Metrics