Abstract

We report on an investigation of a passively mode-locked picosecond ytterbium-doped fiber laser with a repetition rate close to 1 MHz. The mode-locking operation was induced by a butt-coupled semiconductor saturable absorber mirror (SESAM) and stabilized in the normal dispersion regime by means of spectral filtering of a narrow bandwidth (0.1 nm) fiber Bragg grating (FBG). A pulse duration of about 50 ps with maximum output power of 20 mW at 1064 nm were achieved after amplification in the double-pass fiber preamplifier. This compact and reliable all-fiber laser operating at 1064 nm is intended to seed bulk amplifiers in a hybrid fiber/solid-state configuration. Employing a two-stage Nd:YVO4 amplifier, we obtained 10 W average output power, which preserved both the quasi-diffraction limited beam quality and spectral purity of the seeder. Second harmonic generation (SHG) with 50% conversion efficiency was demonstrated in type-II potassium titanyl phosphate (KTP) and type-I angle phase matched lithium triborate (LBO) crystal. Furthermore, a space independent numerical model was developed in order to study the dependence of intracavity pulse energy on the main design parameters of the master oscillator (cavity length, FBG bandwidth, SESAM modulation depth) within the stability range (single pulse per round trip in CW mode-locking operation) of the fiber laser master oscillator.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspective,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  2. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  3. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
    [CrossRef]
  4. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
    [CrossRef]
  5. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [CrossRef]
  6. J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
    [CrossRef]
  7. O. Katz and Y. Sintov, “Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 281, 2874–2878 (2008).
    [CrossRef]
  8. F. Ö. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200  MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005).
    [CrossRef]
  9. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef]
  10. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [CrossRef]
  11. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef]
  12. A. Chong, W. Renninger, and F. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008).
    [CrossRef]
  13. R. Herda and O. G. Okhotnikov, “Mode-locked Yb-doped fiber laser with external compression to 89  fs in normal dispersion fiber,” Appl. Opt. 47, 1182–1186 (2008).
    [CrossRef]
  14. J. Lægsgaard, “Control of fibre laser mode-locking by narrowband Bragg gratings,” J. Phys. B 41, 095401 (2008).
    [CrossRef]
  15. M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
    [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  17. M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
    [CrossRef]
  18. B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,” Opt. Express 15, 15595–15602 (2007).
    [CrossRef]
  19. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode-locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [CrossRef]
  20. A. Agnesi, L. Carrá, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett. 37, 3612–3614 (2012).
    [CrossRef]
  21. A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
    [CrossRef]
  22. D. Turchinovich, X. Liu, and J. Lægsgaarsd, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
    [CrossRef]
  23. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
    [CrossRef]
  24. R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
    [CrossRef]
  25. A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

2013 (1)

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

2012 (2)

A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[CrossRef]

A. Agnesi, L. Carrá, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett. 37, 3612–3614 (2012).
[CrossRef]

2011 (1)

M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
[CrossRef]

2010 (1)

2009 (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[CrossRef]

2008 (6)

O. Katz and Y. Sintov, “Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 281, 2874–2878 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

J. Lægsgaard, “Control of fibre laser mode-locking by narrowband Bragg gratings,” J. Phys. B 41, 095401 (2008).
[CrossRef]

A. Chong, W. Renninger, and F. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Mode-locked Yb-doped fiber laser with external compression to 89  fs in normal dispersion fiber,” Appl. Opt. 47, 1182–1186 (2008).
[CrossRef]

D. Turchinovich, X. Liu, and J. Lægsgaarsd, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
[CrossRef]

2007 (1)

2006 (2)

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

2005 (2)

F. Ö. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200  MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005).
[CrossRef]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

1999 (1)

1997 (3)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[CrossRef]

1996 (1)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

Abreu-Afonso, J.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

Agnesi, A.

A. Agnesi, L. Carrá, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett. 37, 3612–3614 (2012).
[CrossRef]

A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Baumgartl, M.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
[CrossRef]

Benetti, M.

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Carrá, L.

A. Agnesi, L. Carrá, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett. 37, 3612–3614 (2012).
[CrossRef]

A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[CrossRef]

Chen, J.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Clarkson, W. A.

Dergachev, A.

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Di Marco, C.

A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[CrossRef]

Díez, A.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[CrossRef]

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[CrossRef]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[CrossRef]

Golling, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Grange, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Haiml, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Harter, D.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[CrossRef]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[CrossRef]

Herda, R.

Hönninger, C.

Ilday, F. Ö.

F. Ö. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200  MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Janke, C.

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

Kärtner, F.

Kärtner, F. X.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

Katz, O.

O. Katz and Y. Sintov, “Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 281, 2874–2878 (2008).
[CrossRef]

Keller, U.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode-locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

Krainer, L.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Lægsgaard, J.

J. Lægsgaard, “Control of fibre laser mode-locking by narrowband Bragg gratings,” J. Phys. B 41, 095401 (2008).
[CrossRef]

Lægsgaarsd, J.

Limpert, J.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
[CrossRef]

B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,” Opt. Express 15, 15595–15602 (2007).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Liu, X.

Morier-Genoud, F.

Moser, M.

Moulton, P. F.

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspective,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Okhotnikov, O. G.

Ortac, B.

M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
[CrossRef]

Ortaç, B.

Ostinelli, O.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Paschotta, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode-locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Piccoli, R.

A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[CrossRef]

A. Agnesi, L. Carrá, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett. 37, 3612–3614 (2012).
[CrossRef]

Pirzio, F.

Plötner, M.

Reali, G.

A. Agnesi, L. Carrá, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett. 37, 3612–3614 (2012).
[CrossRef]

A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[CrossRef]

Renninger, W.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

Richardson, D. J.

Röser, F.

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Rothhardt, M.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

Ruchti, T.

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Schreiber, T.

M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
[CrossRef]

B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,” Opt. Express 15, 15595–15602 (2007).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Shinn, M.

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Sintov, Y.

O. Katz and Y. Sintov, “Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 281, 2874–2878 (2008).
[CrossRef]

Spühler, G. J.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Sucha, G.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Tünnermann, A.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
[CrossRef]

B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,” Opt. Express 15, 15595–15602 (2007).
[CrossRef]

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Turchinovich, D.

Wise, F.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Yakshin, M. A.

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Appl. Opt. (1)

Appl. Phys. B (4)

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997).
[CrossRef]

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[CrossRef]

M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011).
[CrossRef]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

J. Lægsgaard, “Control of fibre laser mode-locking by narrowband Bragg gratings,” J. Phys. B 41, 095401 (2008).
[CrossRef]

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[CrossRef]

Opt. Commun. (1)

O. Katz and Y. Sintov, “Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 281, 2874–2878 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Other (2)

A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Master oscillator power amplifier (MOPA) scheme. From the left, the master oscillator (seeder) is the low repetition rate passively mode-locked ytterbium fiber laser, AMP1 is the double-pass fiber preamplifier, and AMP2 is the final “bulk” two-stages Nd:YVO4 amplifier.

Fig. 2.
Fig. 2.

Master oscillator (seeder) cavity setup. The injected 20% pump power from the laser diode is indicated in red.

Fig. 3.
Fig. 3.

Pulse autocorrelation trace and fitting (sech2 pulse shape was assumed). Inset shows the corresponding optical spectrum.

Fig. 4.
Fig. 4.

Mode-locked pulse train RF spectrum. Inset shows the higher harmonics.

Fig. 5.
Fig. 5.

Double-pass fiber preamplifier.

Fig. 6.
Fig. 6.

Master oscillator mode-locked pulse train RF spectrum at approximately 4.175 MHz. Inset shows the optical spectrum before and after the double-pass fiber amplifier.

Fig. 7.
Fig. 7.

High power bulk amplifier setup.

Fig. 8.
Fig. 8.

Average power at 532 nm as a function of the incident average power at 1064 nm. Inset shows the temporal trace of the output power stability at 532 nm.

Fig. 9.
Fig. 9.

Intracavity maximum pulse energy versus the repetition rate. From the left it is possible to observe two regimes: “low” repetition rates (5MHz) in which SPM is the limiting factor for the maximum pulse energy and “high” repetition rates (5MHz) in which other factors such as SESAM saturation energy are limiting the maximum pulse energy. In this simulation, the FBG bandwidth was set to ΔλFBG=0.1nm and the modulation depth of the SESAM to ΔRtot=ΔRns+ΔRsat=10%+13%.

Fig. 10.
Fig. 10.

Numerical simulation results for the intracavity maximum pulse energy versus FBG’s spectral width at a 4 MHz repetition rate with ΔRtot=ΔRns+ΔRsat=10%+13%). Red circles are numerical results and the solid line is the fitting. From the fitting Emax,p=k/ΔλFBG where k=0.8·1019J·m.

Fig. 11.
Fig. 11.

Numerical simulation results for the intracavity maximum pulse energy and pulse duration versus modulation depth of the SESAM for frp=4MHz and ΔλFBG=0.1nm.

Tables (1)

Tables Icon

Table 1. Summary of SHG Experiments

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

iAzig2Aβ222AT2+γ|A|2A=0,
ΦNL,max=γPpk(2L)π.
Ep,maxfrpΔλFBG.
Ep,minEsat,AEsat,LΔR,
Esat,LhcAL2λLσe,

Metrics