Abstract

We correct several clerical errors of a previously published paper and provide a material loss Q factor formula with improved accuracy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Zhu, “Analytical design of quasi-closed subwavelength electromagnetic rectangular resonators using stacks of dielectric–plasmonic bilayers,” J. Opt. Soc. Am. B 29, 2575–2580 (2012).
    [CrossRef]

2012 (1)

G. Zhu, “Analytical design of quasi-closed subwavelength electromagnetic rectangular resonators using stacks of dielectric–plasmonic bilayers,” J. Opt. Soc. Am. B 29, 2575–2580 (2012).
[CrossRef]

Zhu, G.

G. Zhu, “Analytical design of quasi-closed subwavelength electromagnetic rectangular resonators using stacks of dielectric–plasmonic bilayers,” J. Opt. Soc. Am. B 29, 2575–2580 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

G. Zhu, “Analytical design of quasi-closed subwavelength electromagnetic rectangular resonators using stacks of dielectric–plasmonic bilayers,” J. Opt. Soc. Am. B 29, 2575–2580 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Material loss Q factor as a function of the dielectric filling ratio. Solid line: analytic result from Eq. (B9) of the previously published paper [1]. Dashed line: analytic result from Eq. (B9) of this errata. Squares: numerical results from COMSOL Multiphysics.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ [ 1 ε x ] = 2 ( 1 η ) ε 0 ( 1 ω p 2 / ω 2 ) 2 ω p 2 ω 2 δ ω i γ d / 2 ω = Γ x ε 0 ( δ ω ω i γ d 2 ω ) ,
δ [ 1 ε y ] = 2 ( 1 η ) ε 0 ( η ε 1 + ( 1 η ) ε 0 ( 1 ω p 2 / ω 2 ) ) 2 ω p 2 ω 2 δ ω i γ d / 2 ω = Γ y ε 0 ( δ ω ω i γ d 2 ω ) ,
Γ x = 2 ( 1 η ) ( 1 ω p 2 / ω 2 ) 2 ω p 2 ω 2 ,
Γ y = 2 ( 1 η ) ( η ε 1 / ε 0 + ( 1 η ) ( 1 ω p 2 / ω 2 ) ) 2 ω p 2 ω 2 ,
2 ω δ ω = π 2 μ 0 ( Γ y ε 0 1 L x 2 Γ x ε 0 1 L y 2 ) ( δ ω ω i γ d 2 ω ) ,
δ ω = ( 1 + 2 ω 2 π 2 μ 0 ( Γ y ε 0 1 L x 2 + Γ x ε 0 1 L y 2 ) ) 1 · i γ d 2 ( 1 + 4 λ p 2 L x 2 1 1 η + λ p 2 L y 2 ( 1 η ) ) 1 · i γ d 2 ,
Q mat ( 1 + 4 λ p 2 L x 2 1 1 η + λ p 2 L y 2 ( 1 η ) ) ω γ p ,

Metrics