Abstract

We investigate the optical bistability (OB) and multistability in a coupled semiconductor double-quantum-dot nanostructure inside an optical ring cavity. It is found that the transition from OB to multistability or vice versa can be easily controlled via properly adjusting the corresponding parameters of the system. Our scheme opens the possibility to optimize and control all optical switching and all optical storage devices in a coupled semiconductor double-quantum-dot nanostructure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  3. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
    [CrossRef]
  4. Y. Wu and L. Deng, “Ultra-slow optical solitons in a cold fourstate medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [CrossRef]
  5. Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [CrossRef]
  6. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [CrossRef]
  7. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  8. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
    [CrossRef]
  9. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003).
    [CrossRef]
  10. A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79, 115315 (2009).
    [CrossRef]
  11. W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
    [CrossRef]
  12. H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
    [CrossRef]
  13. S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62, 15386 (2000).
    [CrossRef]
  14. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
    [CrossRef]
  15. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
    [CrossRef]
  16. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
    [CrossRef]
  17. E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
    [CrossRef]
  18. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
    [CrossRef]
  19. C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
    [CrossRef]
  20. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
    [CrossRef]
  21. H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
    [CrossRef]
  22. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [CrossRef]
  23. S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
    [CrossRef]
  24. W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
    [CrossRef]
  25. H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
  26. A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
    [CrossRef]
  27. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
    [CrossRef]
  28. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
    [CrossRef]
  29. J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
    [CrossRef]
  30. J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
    [CrossRef]
  31. A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
    [CrossRef]
  32. J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
    [CrossRef]
  33. M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008).
    [CrossRef]
  34. J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
    [CrossRef]
  35. Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
    [CrossRef]
  36. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein.
    [CrossRef]

2013 (1)

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

2012 (2)

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
[CrossRef]

2009 (2)

A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79, 115315 (2009).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

2008 (3)

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008).
[CrossRef]

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

2007 (1)

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

2006 (6)

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
[CrossRef]

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

2005 (4)

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2004 (3)

Y. Wu and L. Deng, “Ultra-slow optical solitons in a cold fourstate medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

2003 (5)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein.
[CrossRef]

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

2001 (2)

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

2000 (2)

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62, 15386 (2000).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1996 (2)

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

1995 (1)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

1976 (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Agarwal, G. S.

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

Alcalde, A. M.

H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
[CrossRef]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

Antón, M. A.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008).
[CrossRef]

Artoni, M.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Beck, M.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
[CrossRef]

Borges, H. S.

H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
[CrossRef]

Brown, A.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

Calderón, O. G.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008).
[CrossRef]

Cao, Z.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Carreño, F.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein.
[CrossRef]

Chuang, S. L.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein.
[CrossRef]

Deng, L.

Y. Wu and L. Deng, “Ultra-slow optical solitons in a cold fourstate medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

Diniz Neto, O. O.

H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
[CrossRef]

Du, S. D.

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Dynes, J. F.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Faist, J.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Fraser, J. M.

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62, 15386 (2000).
[CrossRef]

Frogley, M. D.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Gong, S.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Gong, S. Q.

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Goorskey, D. J.

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Harshawerdhan, W.

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

Hou, J. M.

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Huang, P.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Huang, Q. J.

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Jin, S.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Joshi, A.

A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79, 115315 (2009).
[CrossRef]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

Kalini, A.

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

Khadka, U.

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein.
[CrossRef]

Ku, P. C.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein.
[CrossRef]

La Rocca, G. C.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Lee, R. K.

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Li, J.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Li, J. H.

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Li, R.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Liu, J.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Lu, X. Y.

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Luo, J. M.

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Melle, S.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008).
[CrossRef]

Niu, Y.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Pan, S. H.

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Paspalakis, E.

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Phillips, C. C.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Phillips, M.

Rodger, J.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Sadeghi, S. M.

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62, 15386 (2000).
[CrossRef]

Sanz, L.

H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
[CrossRef]

Serapiglia, G. B.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Sheng, J.

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Sirtori, C.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Sun, H.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Terzis, A. F.

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

Tsaousidou, M.

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

van Driel, H. M.

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62, 15386 (2000).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Villas-Boas, J. M.

H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
[CrossRef]

Vodopyanov, K. L.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Wang, H.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).

Wang, Z.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Wu, X.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Wu, Y.

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu and L. Deng, “Ultra-slow optical solitons in a cold fourstate medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Xiao, M.

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Xu, Z.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Xu, Z. Z.

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Yang, W.

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

Yang, W. X.

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Yang, X.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Yu, B.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Yu, R.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Yuan, C.

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

Zhen, S.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Zhu, J.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Zhu, K.

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

Appl. Phys. B (1)

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

Nat. Mater. (1)

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006).
[CrossRef]

Opt. Commun. (2)

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008).
[CrossRef]

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996).
[CrossRef]

Phys. Rev. A (8)

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003).
[CrossRef]

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Phys. Rev. B (8)

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62, 15386 (2000).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79, 115315 (2009).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012).
[CrossRef]

Phys. Rev. Lett. (9)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Y. Wu and L. Deng, “Ultra-slow optical solitons in a cold fourstate medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Physica E (1)

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Proc. IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein.
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the coupled semiconductor double-quantum-dot nanostructure under study. (b) A unidirectional ring cavity containing four mirrors and semiconductor double-quantum-dot sample of length L. M3 and M4 are perfect mirrors, and the intensity reflection and transmission coefficient of mirrors M1 and M2 are R and T (with R+T=1), respectively. EI and ET are the incident and transmitted fields, respectively.

Fig. 2.
Fig. 2.

(a) Output field |x| versus input field |y| for different values of Ω3; the other parameters are C=400meV, Δ2=8meV, Δ3=14meV, Ω2=0.1meV, Δ1=10meV, Ω4=1meV, and Φ=π. (b) Im(ρ41) and Re(ρ41) as a function of the Ω3; the other parameters are the same as in panel (a) except for Ωp=0.01meV.

Fig. 3.
Fig. 3.

(a) Output field |x| versus input field |y| for different values of Ω4; the other parameters are C=400meV, Δ2=8meV, Δ3=14meV, Ω2=0.1meV, Δ1=10meV, Ω3=2meV, and Φ=π. (b) Im(ρ41) and Re(ρ41) as a function of the Ω4; the other parameters are the same as in panel (a) except for Ωp=0.01meV.

Fig. 4.
Fig. 4.

(a) Output field |x| versus input field |y| for different values of Δ1; the other parameters are C=400meV, Δ2=8meV, Δ3=14meV, Ω2=0.1meV, Ω3=2meV, Ω4=1meV, and Φ=π. (b) Output field |x| versus input field |y| for different values of Δ3; the other parameters are the same as in panel (a) except for Δ1=10meV.

Fig. 5.
Fig. 5.

Output field |x| versus input field |y| for different values of Δ2; the other parameters are C=400meV, Δ1=10meV, Δ3=14meV, Ω2=0.1meV, Ω3=2meV, Ω4=1meV, and Φ=π.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Hint=(Δ3Δ2)|22|Δ2|33|Δ1|44|(Ω1|41|+Ω2|31|+Ω3|32|+Ω4eiΦ|42|+H.c.),
ρt=i[H,ρ(t)]+L(ρ),
ρ22t=γ21ρ22+γ31ρ33+γ41ρ44+iΩ3ρ32iΩ3ρ23+iΩ4ρ42eiΦiΩ4ρ24eiΦ,
ρ33t=γ3ρ33iΩ2ρ31+iΩ2ρ13iΩ3ρ32+iΩ3ρ23,
ρ44t=γ4ρ44iΩ1ρ41+iΩ1ρ14iΩ4ρ42eiΦ+iΩ4ρ24eiΦ,
ρ12t=Γ122i(Δ2Δ3)ρ12iΩ3ρ13+iΩ2ρ32iΩ4ρ14eiΦ+iΩ1ρ42,
ρ13t=(Γ132+iΔ2)ρ13iΩ2(ρ11ρ33)iΩ3ρ12+iΩ1ρ43,
ρ14t=(Γ142+iΔ1)ρ14iΩ1(ρ11ρ44)iΩ4ρ12eiΦ+iΩ2ρ34,
ρ23t=(Γ232+iΔ3)ρ23iΩ3(ρ22ρ33)iΩ2ρ21+iΩ4ρ43eiΦ,
ρ24t=(Γ242+iΔ4)ρ24iΩ4(ρ22ρ44)eiΦiΩ1ρ21+iΩ3ρ34,
ρ34t=[Γ342+i(Δ1Δ2)]ρ34iΩ1ρ31+iΩ2ρ14iΩ4ρ32eiΦ+iΩ3ρ24,
E1t+cE1z=iω12ε0P(ω1),
E1z=iNω1μ142cε0ρ41.
E1(L)=E1T/T,
E1(0)=TE1I+RE1(L),
y=2xiCρ41,

Metrics