Abstract

The grating magneto-optical trap (GMOT) requires only one beam and three planar diffraction gratings to form a cloud of cold atoms above the plane of the diffractors. Despite the complicated polarization arrangement, we demonstrate sub-Doppler cooling of Rb87 atoms to a temperature of 7.6(0.6)μK through a multistage, far-detuned GMOT in conjunction with optical molasses. A decomposition of the electric field into polarization components for this geometry does not yield a mapping onto standard sub-Doppler laser-cooling configurations. With numerical simulations, we find that the polarization composition of the GMOT optical field, which includes σ and π polarized light, does produce sub-Doppler temperatures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Shimizu, K. Shimizu, and H. Takuma, “Four-beam laser trap of neutral atoms,” Opt. Lett. 16, 339–341 (1991).
    [CrossRef]
  2. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
    [CrossRef]
  3. S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, “Integrated magneto-optical traps on a chip using silicon pyramid structures,” Opt. Express 17, 14109–14114 (2009).
    [CrossRef]
  4. J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett 83, 3398–3401 (1999).
    [CrossRef]
  5. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
    [CrossRef]
  6. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
    [CrossRef]
  7. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
    [CrossRef]
  8. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
    [CrossRef]
  9. C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
    [CrossRef]
  10. D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
    [CrossRef]
  11. J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
    [CrossRef]
  12. J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).
  13. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [CrossRef]
  14. N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
    [CrossRef]
  15. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
    [CrossRef]
  16. P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
    [CrossRef]
  17. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989).
    [CrossRef]
  18. P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, “Optical molasses and multilevel atoms: theory,” J. Opt. Soc. Am. B 6, 2058–2071 (1989).
    [CrossRef]
  19. B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
    [CrossRef]
  20. K. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
    [CrossRef]
  21. V. G. Minogin and O. T. Serimaa, “Resonant light pressure forces in a strong standing laser wave,” Opt. Commun. 30, 373–379 (1979).
    [CrossRef]
  22. M. Walhout, J. Dalibard, S. L. Rolston, and W. D. Phillips, “σ+-σ− Optical molasses in a longitudinal magnetic field,” J. Opt. Soc. Am. B 9, 1997–2007 (1992).
    [CrossRef]
  23. C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
    [CrossRef]
  24. T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990).
    [CrossRef]
  25. K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
    [CrossRef]
  26. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [CrossRef]

2013

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

2011

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

2010

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[CrossRef]

2009

2007

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

2006

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

2002

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[CrossRef]

2001

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

2000

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
[CrossRef]

1999

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett 83, 3398–3401 (1999).
[CrossRef]

1996

1995

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

1994

K. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

1992

M. Walhout, J. Dalibard, S. L. Rolston, and W. D. Phillips, “σ+-σ− Optical molasses in a longitudinal magnetic field,” J. Opt. Soc. Am. B 9, 1997–2007 (1992).
[CrossRef]

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef]

1991

1990

B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
[CrossRef]

T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990).
[CrossRef]

1989

1988

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

1985

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[CrossRef]

1979

V. G. Minogin and O. T. Serimaa, “Resonant light pressure forces in a strong standing laser wave,” Opt. Commun. 30, 373–379 (1979).
[CrossRef]

Anderson, J. R.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Arnold, A. S.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[CrossRef]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
[CrossRef]

Ashkin, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[CrossRef]

Barclay, P. E.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Bjorkholm, J. E.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[CrossRef]

Cable, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[CrossRef]

Chu, S.

P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, “Optical molasses and multilevel atoms: theory,” J. Opt. Soc. Am. B 6, 2058–2071 (1989).
[CrossRef]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[CrossRef]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Coates, A. B.

K. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

Cohen-Tannoudji, C.

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Cooper, C. J.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Cotter, J. P.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, “Integrated magneto-optical traps on a chip using silicon pyramid structures,” Opt. Express 17, 14109–14114 (2009).
[CrossRef]

Dalibard, J.

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

DiVincenzo, D. P.

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
[CrossRef]

Dragt, A. J.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Edwards, N. H.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Foot, C. J.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Gould, P. L.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

Grangier, P.

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[CrossRef]

Griffin, P. F.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[CrossRef]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
[CrossRef]

Grover, J. A.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Grynberg, G.

K. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

Hafezi, M.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Hänsch, T. W.

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett 83, 3398–3401 (1999).
[CrossRef]

Hänsel, W.

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett 83, 3398–3401 (1999).
[CrossRef]

Hatamian, S.

B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
[CrossRef]

Hinds, E. A.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, “Integrated magneto-optical traps on a chip using silicon pyramid structures,” Opt. Express 17, 14109–14114 (2009).
[CrossRef]

Hoffman, J. E.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Hollberg, L.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[CrossRef]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Ironside, C. N.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

Jhe, W.

Kim, J. A.

Kim, Z.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Koller, Ch.

J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
[CrossRef]

Laliotis, A.

Lee, K. I.

Lett, P. D.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Lindquist, K.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Lobb, C. J.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Mabuchi, H.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Majer, J.

J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
[CrossRef]

Metcalf, H.

B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
[CrossRef]

Metcalf, H. J.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

Minogin, V. G.

V. G. Minogin and O. T. Serimaa, “Resonant light pressure forces in a strong standing laser wave,” Opt. Commun. 30, 373–379 (1979).
[CrossRef]

Noh, H. R.

Nshii, C. C.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

Orozco, L. A.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Painter, O.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Perrin, H.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Petsas, K. I.

K. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

Phillips, W. D.

M. Walhout, J. Dalibard, S. L. Rolston, and W. D. Phillips, “σ+-σ− Optical molasses in a longitudinal magnetic field,” J. Opt. Soc. Am. B 9, 1997–2007 (1992).
[CrossRef]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

Pollock, S.

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett 83, 3398–3401 (1999).
[CrossRef]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Reymond, G.

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[CrossRef]

Riis, E.

Ritsch, H.

J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
[CrossRef]

Rolston, S. L.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

M. Walhout, J. Dalibard, S. L. Rolston, and W. D. Phillips, “σ+-σ− Optical molasses in a longitudinal magnetic field,” J. Opt. Soc. Am. B 9, 1997–2007 (1992).
[CrossRef]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Schlosser, N.

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[CrossRef]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Schmiedmayer, J.

J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
[CrossRef]

See, P.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

Serimaa, O. T.

V. G. Minogin and O. T. Serimaa, “Resonant light pressure forces in a strong standing laser wave,” Opt. Commun. 30, 373–379 (1979).
[CrossRef]

Sesko, D.

T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990).
[CrossRef]

Shang, S.-Q.

B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
[CrossRef]

Sheehy, B.

B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
[CrossRef]

Shimizu, F.

Shimizu, K.

Sinclair, A. G.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

Srinivasan, K.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Stane, A. M.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Stephens, M.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef]

Szriftgiser, P.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Takuma, H.

Taylor, J. M.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Townsend, C. G.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Ungar, P. J.

van der Straten, P.

B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
[CrossRef]

Vangeleyn, M.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[CrossRef]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
[CrossRef]

Verdú, J.

J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
[CrossRef]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Vlahacos, C. P.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Walhout, M.

Walker, T.

T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990).
[CrossRef]

Watts, R. N.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

Weiss, D. S.

Wellstood, F. C.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Westbrook, C. I.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

Wieman, C.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef]

T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990).
[CrossRef]

Wood, A. K.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Zetie, K. P.

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Zoubi, H.

J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
[CrossRef]

Appl. Phys. Lett.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Fortschritte der Physik

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik 48, 771–783 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Nanotechnol.

C. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[CrossRef]

Nature

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef]

Opt. Commun.

V. G. Minogin and O. T. Serimaa, “Resonant light pressure forces in a strong standing laser wave,” Opt. Commun. 30, 373–379 (1979).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

K. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Stane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995).
[CrossRef]

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
[CrossRef]

Phys. Rev. Lett

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett 83, 3398–3401 (1999).
[CrossRef]

Phys. Rev. Lett.

B. Sheehy, S.-Q. Shang, P. van der Straten, S. Hatamian, and H. Metcalf, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys. Rev. Lett. 64, 858–861 (1990).
[CrossRef]

J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer, “Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity,” Phys. Rev. Lett. 103, 043603 (2009).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[CrossRef]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[CrossRef]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef]

T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990).
[CrossRef]

Rev. Mex. Fis. S

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to SQUIDs,” Rev. Mex. Fis. S 57, 1 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental setup. AC, antechamber; CCD, CCD camera; GM, grating mirrors; GV, gate valve; IP, ion pump; MB, MOT beam; MC, MOT coils; MS, microscope slide; MSC, main science chamber; TS, 2-D translation stage; VM, vacuum manipulator; VMR, vacuum manipulator rod. (b) Single-beam GMOT configuration. (c) GMOT atom image with CCD camera.

Fig. 2.
Fig. 2.

(a) Temperature versus the detuning of the cooling beam for a single-stage, far-detuned GMOT (see Table 1); 2σ is the 1/e radius of atomic cloud, and we fit 1–9  ms time-of-flight data to σ2=σ02+σv2t2 (right). We estimate the atomic temperature T(=mRbσv2/kB) from the fits (left). (b) Temperature versus the detuning of the cooling beam for a multistage, far-detuned GMOT with no molasses stage (F) and with a molasses stage (G) (see Table 2).

Fig. 3.
Fig. 3.

(a) Tetrahedral MOT configuration; |cosθ|=1/3 and i=14kiIi=0. (b) Optical lattices in the xz plane (solid line: 1D optical lattice along the z axis of the xz plane). (c) Optical lattices in the xy plane (solid line: 1D optical lattice along the diagonal axis with an angle of 60° relative to the y axis, dashed line: 1D optical lattice along the diagonal axis with an angle of 150° relative to the y axis).

Fig. 4.
Fig. 4.

Calculated force on atoms as a function of atom velocity for different axes and polarization configurations of the GMOT. (a) Vertical axis of the GMOT, the z axis of the xz plane [Fig. 3(b)]. (b) Horizontal axes of the GMOT, the diagonal axes of the xy plane. Solid line: the axis at an angle of 60° relative to the y axis, dashed line: the axis at an angle of 150° relative to the y axis [see Fig. 3(c)]. (c) σ+-σ orientational cooling. (d) lin--lin Sisyphus cooling where I/Isat=1.2 and δ=1.5Γ. The right column shows a zoom of the region where the slope is largest around zero velocity.

Fig. 5.
Fig. 5.

Atom number (Natom) and atomic peak density (natom) as a function of the magnetic field gradient (dB/dz). Each data point has the same initial MOT atom number extracted simultaneously from a series of trials, and we vary dB/dz during the far-detuned MOT process.

Fig. 6.
Fig. 6.

Atom number in a GMOT (without sub-Doppler cooling) as a function of the magnetic field gradient.

Tables (2)

Tables Icon

Table 1. Single-Stage, 50 ms Far-Detuned GMOT Parameters When Scanning the Detuning of a Single MOT Beam (Time Flows Downward in the Table)a

Tables Icon

Table 2. Multistage, 60 ms Far-Detuned GMOT and 1 ms Optical Molasses Parameters, with Time Flowing Downward in the Tablea

Metrics