Abstract

The spectral behavior of the intensity noise correlations between the two orthogonally polarized modes of a dual-frequency Nd:YAG laser is investigated, both experimentally and theoretically. We show, for different coupling strengths between the two orthogonally polarized modes, how the presence of the relaxation oscillations due to the class B dynamical behavior of our laser affects the shape of the intensity noise correlation spectra. Different coupling situations have been achieved by controlled alignment of the two orthogonally polarized oscillating modes with respect to the crystallographic axes of a 100-cut neodymium-doped yttrium aluminum garnet active medium in which the light-emitting dipoles behave as if they are aligned along the crystallographic axes. The theoretical modeling has been done based on the assumptions that the only source of noise for the two lasing modes in the interesting frequency range (0–120 kHz) is the intensity noise of the pump diode laser, the pump noises for the two modes are white frequency noises of identical amplitudes, and the pump fluctuations are in phase, but partially correlated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
    [CrossRef]
  2. S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
    [CrossRef]
  3. D. C. Scott, D. V. Plant, and H. R. Fetterman, “60 GHz sources using optically driven heterojunction bipolar transistors,” Appl. Phys. Lett. 61, 1–3 (1992).
    [CrossRef]
  4. C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
    [CrossRef]
  5. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21, 480–482 (2009).
    [CrossRef]
  6. M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
    [CrossRef]
  7. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
    [CrossRef]
  8. S. Taccheo, P. Laporta, O. Svelto, and G. de Geronimo, “Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser,” Opt. Lett. 21, 1747–1749 (1996).
    [CrossRef]
  9. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
    [CrossRef]
  10. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
    [CrossRef]
  11. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
    [CrossRef]
  12. S. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker, “Intensity noise correlations in a two-frequency VECSEL,” Opt. Express 21, 2538–2550 (2013).
    [CrossRef]
  13. S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
    [CrossRef]
  14. A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J. P. Pocholle, F. Bretenaker, and M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37, 4901–4903 (2012).
    [CrossRef]
  15. D. E. McCumber, “Intensity fluctuations in the output of CW laser oscillators. I,” Phys. Rev. 141, 306–322 (1966).
    [CrossRef]
  16. S. Sing, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+: in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
    [CrossRef]
  17. G. W. Burdick, C. K. Jayasankar, and F. S. Richardson, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
    [CrossRef]
  18. R. Dalgliesh, A. D. May, and G. Stphan, “Polarization states of a single-mode Nd3+:YAG laser—Part I: theory,” IEEE J. Quantum Electron. 34, 1485–1492 (1998).
    [CrossRef]
  19. A. McKay, J. M. Dawes, and J.-D. Park, “Polarization-mode coupling in (100)-cut Nd:YAG,” Opt. Express 15, 16342–16347 (2007).
    [CrossRef]
  20. C. H. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289–2295 (1963).
    [CrossRef]
  21. K. Otsuka and M. Saruwatari, “Spatial hole-burning effects in a Nd3+:YAG laser,” IEEE J. Quantum Electron. 7, 225–230 (1971).
    [CrossRef]

2013 (1)

2012 (1)

2009 (3)

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21, 480–482 (2009).
[CrossRef]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

2004 (1)

C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

2001 (1)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

1998 (2)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stphan, “Polarization states of a single-mode Nd3+:YAG laser—Part I: theory,” IEEE J. Quantum Electron. 34, 1485–1492 (1998).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

G. W. Burdick, C. K. Jayasankar, and F. S. Richardson, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

1992 (2)

D. C. Scott, D. V. Plant, and H. R. Fetterman, “60 GHz sources using optically driven heterojunction bipolar transistors,” Appl. Phys. Lett. 61, 1–3 (1992).
[CrossRef]

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef]

1974 (1)

S. Sing, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+: in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

1971 (1)

K. Otsuka and M. Saruwatari, “Spatial hole-burning effects in a Nd3+:YAG laser,” IEEE J. Quantum Electron. 7, 225–230 (1971).
[CrossRef]

1966 (1)

D. E. McCumber, “Intensity fluctuations in the output of CW laser oscillators. I,” Phys. Rev. 141, 306–322 (1966).
[CrossRef]

1963 (1)

C. H. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289–2295 (1963).
[CrossRef]

Alouini, M.

S. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker, “Intensity noise correlations in a two-frequency VECSEL,” Opt. Express 21, 2538–2550 (2013).
[CrossRef]

A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J. P. Pocholle, F. Bretenaker, and M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37, 4901–4903 (2012).
[CrossRef]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef]

C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

Baili, G.

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

Bielawski, S.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef]

Bretenaker, F.

S. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker, “Intensity noise correlations in a two-frequency VECSEL,” Opt. Express 21, 2538–2550 (2013).
[CrossRef]

A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J. P. Pocholle, F. Bretenaker, and M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37, 4901–4903 (2012).
[CrossRef]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
[CrossRef]

Brunel, M.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
[CrossRef]

Burdick, G. W.

G. W. Burdick, C. K. Jayasankar, and F. S. Richardson, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Chazelas, J.

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

Czarny, C.

C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Dalgliesh, R.

R. Dalgliesh, A. D. May, and G. Stphan, “Polarization states of a single-mode Nd3+:YAG laser—Part I: theory,” IEEE J. Quantum Electron. 34, 1485–1492 (1998).
[CrossRef]

Dawes, J. M.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21, 480–482 (2009).
[CrossRef]

A. McKay, J. M. Dawes, and J.-D. Park, “Polarization-mode coupling in (100)-cut Nd:YAG,” Opt. Express 15, 16342–16347 (2007).
[CrossRef]

De, S.

de Geronimo, G.

deMars, G.

C. H. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289–2295 (1963).
[CrossRef]

Derozier, D.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

Dolfi, D.

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[CrossRef]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

El Amili, A.

Fetterman, H. R.

D. C. Scott, D. V. Plant, and H. R. Fetterman, “60 GHz sources using optically driven heterojunction bipolar transistors,” Appl. Phys. Lett. 61, 1–3 (1992).
[CrossRef]

Feugnet, G.

A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J. P. Pocholle, F. Bretenaker, and M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37, 4901–4903 (2012).
[CrossRef]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Formont, S.

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

Garnache, A.

Ghosh, R.

Glorieux, P.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef]

Huignard, J. P.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

Jayasankar, C. K.

G. W. Burdick, C. K. Jayasankar, and F. S. Richardson, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Krakowski, M.

C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Laporta, P.

Larat, C.

C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Le Floch, A.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
[CrossRef]

Loas, G.

Mandel, P.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef]

May, A. D.

R. Dalgliesh, A. D. May, and G. Stphan, “Polarization states of a single-mode Nd3+:YAG laser—Part I: theory,” IEEE J. Quantum Electron. 34, 1485–1492 (1998).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Intensity fluctuations in the output of CW laser oscillators. I,” Phys. Rev. 141, 306–322 (1966).
[CrossRef]

McKay, A.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21, 480–482 (2009).
[CrossRef]

A. McKay, J. M. Dawes, and J.-D. Park, “Polarization-mode coupling in (100)-cut Nd:YAG,” Opt. Express 15, 16342–16347 (2007).
[CrossRef]

Monsterlet, A.

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

Morvan, L.

Otsuka, K.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef]

K. Otsuka and M. Saruwatari, “Spatial hole-burning effects in a Nd3+:YAG laser,” IEEE J. Quantum Electron. 7, 225–230 (1971).
[CrossRef]

Pal, V.

Park, J.-D.

Pillet, G.

Plant, D. V.

D. C. Scott, D. V. Plant, and H. R. Fetterman, “60 GHz sources using optically driven heterojunction bipolar transistors,” Appl. Phys. Lett. 61, 1–3 (1992).
[CrossRef]

Pocholle, J. P.

A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J. P. Pocholle, F. Bretenaker, and M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37, 4901–4903 (2012).
[CrossRef]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Rebut, M.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Richardson, F. S.

G. W. Burdick, C. K. Jayasankar, and F. S. Richardson, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Sagnes, I.

Saruwatari, M.

K. Otsuka and M. Saruwatari, “Spatial hole-burning effects in a Nd3+:YAG laser,” IEEE J. Quantum Electron. 7, 225–230 (1971).
[CrossRef]

Schwartz, S.

A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J. P. Pocholle, F. Bretenaker, and M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37, 4901–4903 (2012).
[CrossRef]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Scott, D. C.

D. C. Scott, D. V. Plant, and H. R. Fetterman, “60 GHz sources using optically driven heterojunction bipolar transistors,” Appl. Phys. Lett. 61, 1–3 (1992).
[CrossRef]

Sing, S.

S. Sing, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+: in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Smith, R. G.

S. Sing, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+: in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Statz, H.

C. H. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289–2295 (1963).
[CrossRef]

Stphan, G.

R. Dalgliesh, A. D. May, and G. Stphan, “Polarization states of a single-mode Nd3+:YAG laser—Part I: theory,” IEEE J. Quantum Electron. 34, 1485–1492 (1998).
[CrossRef]

Svelto, O.

Taccheo, S.

Tang, C. H.

C. H. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289–2295 (1963).
[CrossRef]

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

Tonda-Goldstein, S.

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

Vallet, M.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

Van Uitert, L. G.

S. Sing, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+: in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Appl. Phys. Lett. (1)

D. C. Scott, D. V. Plant, and H. R. Fetterman, “60 GHz sources using optically driven heterojunction bipolar transistors,” Appl. Phys. Lett. 61, 1–3 (1992).
[CrossRef]

Electron. Lett. (1)

C. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Dalgliesh, A. D. May, and G. Stphan, “Polarization states of a single-mode Nd3+:YAG laser—Part I: theory,” IEEE J. Quantum Electron. 34, 1485–1492 (1998).
[CrossRef]

K. Otsuka and M. Saruwatari, “Spatial hole-burning effects in a Nd3+:YAG laser,” IEEE J. Quantum Electron. 7, 225–230 (1971).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21, 480–482 (2009).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

S. Tonda-Goldstein, A. Monsterlet, D. Dolfi, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theor. Tech. 54, 847–853 (2006).
[CrossRef]

J. Appl. Phys. (1)

C. H. Tang, H. Statz, and G. deMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34, 2289–2295 (1963).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. (1)

D. E. McCumber, “Intensity fluctuations in the output of CW laser oscillators. I,” Phys. Rev. 141, 306–322 (1966).
[CrossRef]

Phys. Rev. A (2)

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992).
[CrossRef]

Phys. Rev. B (2)

S. Sing, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+: in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

G. W. Burdick, C. K. Jayasankar, and F. S. Richardson, “Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12,” Phys. Rev. B 50, 16309–16325 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic representation of the crystallographic axes and the orientation of the dipoles of a 100-cut Nd:YAG crystal; (b) Orientation of the two eigenpolarizations x and y with respect to the crystallographic axes.

Fig. 2.
Fig. 2.

(a) Schematic representation of the experimental setup. LD, laser diode; QWP, quarter-wave plate; HWP, half-wave plate; BS, beam splitter; PBS, polarization beam splitter; D, photodiode. (b) Orientations of the two eigenpolarization modes x, y with respect to the crystallographic axes 010 and 001.

Fig. 3.
Fig. 3.

Results for α=20°, which corresponds to a theoretical coupling constant value C=0.09. (a) Experimental and (b) theoretical RIN spectra for the two oscillating modes (red and blue plots correspond to x- and y-polarized modes, respectively), (c) experimental and (d) theoretical intensity noise correlation amplitude spectra, (e) experimental and (f) theoretical intensity noise correlation phase spectra. The following parameter values have been used for theoretical simulations: β=0.025, r1=1.35, r2=1.4, τx=1/γx5ns, τy=1/γy5.2ns, τ=1/Γ200μs, RINpump1=RINpump2=110dB/Hz, η=0.75, ψ=0.

Fig. 4.
Fig. 4.

RIN spectrum of the pump laser (Resolution bandwidth, 500 Hz).

Fig. 5.
Fig. 5.

Results for α=30°, which corresponds to a coupling constant value C=0.40. (a) Experimental and (b) theoretical RIN spectra for the two oscillating modes (red and blue plots correspond to x- and y-polarized modes, respectively), (c) experimental and (d) theoretical intensity noise correlation amplitude spectra, (e) experimental and (f) theoretical intensity noise correlation phase spectra. The following parameter values have been used for theoretical simulation: β=0.025, r1=1.35, r2=1.4, τx=1/γx5ns, τy=1/γy5.2ns, τ=1/Γ200μs, RINpump1=RINpump2=110dB/Hz, η=0.75, ψ=0.

Fig. 6.
Fig. 6.

Results for α=52°, which corresponds to a coupling constant value C=0.75. (a) Experimental and (b) theoretical RIN spectra for the two oscillating modes (red and blue plots correspond to x- and y-polarized modes, respectively), (c) experimental and (d) theoretical intensity noise correlation amplitude spectra, (e) experimental and (f) theoretical intensity noise correlation phase spectra. The following parameter values have been used for theoretical simulation: β=0.025, r1=1.38, r2=1.4, τx=1/γx5ns, τy=1/γy5.1ns, τ=1/Γ200μs, RINpump1=RINpump2=110dB/Hz, η=0.75, ψ=0.

Fig. 7.
Fig. 7.

Normalized transfer functions for the in-phase (red line) and antiphase (black line) relaxation oscillation mechanisms for three different values of α, corresponding to three different coupling situations: (a) α=20°, (b) α=30°, and (c) α=52°. The values of the other parameters used for the simulations are β=0.025, r1=r2=1.4, τx=τy=5ns, τ=200μs, η=0.75, ψ=0.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

x=(cosαsinα0),y=(sinαcosα0),
dFxdt=γxFx+κFx[N1A+N2B],
dFydt=γyFy+κFy[N2A+N1B],
dN1dt=Γ(N01N1)κN1[FxA+FyB],
dN2dt=Γ(N02N2)κN2[FyA+FxB],
A=cos2α+βsin2α,
B=sin2α+βcos2α.
C=4A2B2(A2+B2)2.
FxFx0=Γ[A(r11)B(r21)]κ(A2B2),
FyFy0=Γ[A(r21)B(r11)]κ(A2B2),
N1N1th=(AγxBγy)κ(A2B2),
N2N2th=(AγyBγx)κ(A2B2),
N01(t)=N¯01+δN01(t),
N02(t)=N¯02+δN02(t).
Fx(t)=Fx0+δFx(t),
Fy(t)=Fy0+δFy(t),
N1(t)=N1th+δN1(t),
N2(t)=N2th+δN2(t).
[δF˜x(f)δF˜y(f)]=[M11(f)M12(f)M21(f)M22(f)][δN˜01(f)δN˜02(f)],
M11(f)=A(A2B2)Γ[(AγyBγx)2iπfκFy0(r2Γ2iπf)]Δ,
M12(f)=B(A2B2)Γ[(AγxBγy)+2iπfκFy0(r1Γ2iπf)]Δ,
M21(f)=B(A2B2)Γ[(AγyBγx)+2iπfκFx0(r2Γ2iπf)]Δ,
M22(f)=A(A2B2)Γ[(AγxBγy)2iπfκFx0(r1Γ2iπf)]Δ.
Δ=A2[(AγxBγy)2iπfκFx0(r1Γ2iπf)][(AγyBγx)2iπfκFy0(r2Γ2iπf)]B2[(AγxBγy)+2iπfκFy0(r1Γ2iπf)][(AγyBγx)+2iπfκFx0(r2Γ2iπf)].
fR=12πΓγcav(r1),
fAR=12πΓγcav(r1)(AB)2(A+B)2.
|δN˜01(f)|2=|δN˜02(f)|2=|δN˜0|2,
δN˜01(f)δN˜02*(f)=η|δN˜0|2eiψ,
RINpump1=|δN˜0|2N¯012,
RINpump2=|δN˜0|2N¯022.
RINx(f)=|δF˜x(f)|2Fx02,
RINy(f)=|δF˜y(f)|2Fy02.
Θ(f)=δF˜x(f)δF˜y*(f)|δF˜x(f)|2|δF˜y(f)|2.
δF˜in=12(δF˜x+δF˜y),
δF˜anti=12(δF˜xδF˜y).
Tin=|δF˜in|2|δN˜0|2=2Γ4(r1)2(1+η)[Γγcav(r1)4π2f2]2+(2πfrΓ)2,
Tanti=|δF˜anti|2|δN˜0|2=2Γ4(r1)2(1η)(AB)2(A+B)2[Γγcav(r1)(AB)2(A+B)24π2f2]2+(2πfrΓ)2.

Metrics