Abstract

We demonstrate the use of pulse-front tilt (PFT) in cross-correlation frequency-resolved optical gating (XFROG) implemented in polarization-gate geometry to measure arbitrary complex ultrashort pulses tens of picoseconds long on a single-camera frame with the potential for a single-shot measurement. The PFT is generated by a diffraction grating. We measured chirped double pulses separated by 4.7 and 24 ps with fine details and accurately retrieved them using the standard XFROG retrieval algorithm. The temporal range of our device is 28 ps, an order of magnitude longer than available from standard single-shot FROG devices without PFT.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
    [CrossRef]
  2. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
    [CrossRef]
  3. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, “Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Opt. Lett. 37, 3891–3893 (2012).
    [CrossRef]
  4. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
  5. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Extremely simple device for measuring 20-fs pulses,” Opt. Lett. 29, 1025–1027 (2004).
    [CrossRef]
  6. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
    [CrossRef]
  7. L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25, A70–A80 (2008).
    [CrossRef]
  8. S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
    [CrossRef]
  9. A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
    [CrossRef]
  10. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
    [CrossRef]
  11. D. Lee, P. Gabolde, and R. Trebino, “Toward single-shot measurement of broadband ultrafast continuum,” J. Opt. Soc. Am. B 25, A25–A33 (2008).
    [CrossRef]
  12. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [CrossRef]
  13. T. C. Wong, J. Ratner, V. Chauhan, J. Cohen, P. M. Vaughan, L. Xu, A. Consoli, and R. Trebino, “Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating,” J. Opt. Soc. Am. B 29, 1237–1244 (2012).
    [CrossRef]
  14. T. C. Wong, J. Ratner, and R. Trebino, “Simultaneous measurement of two different-color ultrashort pulses on a single shot,” J. Opt. Soc. Am. B 29, 1889–1893 (2012).
    [CrossRef]
  15. R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
    [CrossRef]
  16. G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003).
    [CrossRef]
  17. P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
    [CrossRef]
  18. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
    [CrossRef]
  19. B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
    [CrossRef]
  20. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef]
  21. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
    [CrossRef]
  22. B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
    [CrossRef]
  23. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
    [CrossRef]
  24. B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
    [CrossRef]
  25. T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
    [CrossRef]
  26. R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
    [CrossRef]
  27. R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
    [CrossRef]
  28. Y. Pu, W. Wang, R. B. Dorshow, B. B. Das, and R. R. Alfano, “Review of ultrafast fluorescence polarization spectroscopy [Invited],” Appl. Opt. 52, 917–929 (2013).
    [CrossRef]
  29. D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
    [CrossRef]
  30. X.-H. Hu and T. Juhasz, “Study of corneal ablation with picosecond laser pulses at 211  nm and 263  nm,” Lasers Surg. Med. 18, 373–380 (1996).
    [CrossRef]
  31. A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
    [CrossRef]
  32. J. M. Krauss and C. A. Puliafito, “Lasers in ophthalmology,” Lasers Surg. Med. 17, 102–159 (1995).
    [CrossRef]
  33. R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).
  34. E. F. Bernstein, “Laser tattoo removal,” Semin. Plast. Surg. 21, 175–192 (2007).
    [CrossRef]
  35. N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
    [CrossRef]
  36. N. I. Tankovich, A. M. Hunter, and K. Y. Tang, “Hair removal device and method,” U.S. patent6,267,771 (July31, 2001).
  37. M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74, 1194–1199 (1995).
    [CrossRef]
  38. A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999).
    [CrossRef]
  39. M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
    [CrossRef]
  40. M. B. Strigin and A. N. Chudinov, “Cutting of glass by picosecond laser radiation,” Opt. Commun. 106, 223–226 (1994).
    [CrossRef]
  41. D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).
  42. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
    [CrossRef]
  43. N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D 37, 638–643 (2004).
  44. J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
    [CrossRef]
  45. J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
    [CrossRef]
  46. H. P. Weber and H. G. Danielmeyer, “Multimode effects in intensity correlation measurements,” Phys. Rev. A 2, 2074–2079 (1970).
    [CrossRef]
  47. E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
    [CrossRef]
  48. C. Lee and S. Jayaraman, “Measurement of ultrashort optical pulses by two-photon photoconductivity techniques,” Opto-electronics 6, 115–120 (1974).
    [CrossRef]
  49. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17, 658–660 (1992).
    [CrossRef]
  50. P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” Opt. Quantum Electron. 18, 145–154 (1986).
    [CrossRef]
  51. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
    [CrossRef]
  52. S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993).
    [CrossRef]
  53. H. P. Weber and R. Dändliker, “Method for measurement the shape asymmetry of picosecond light pulses,” Phys. Lett. A 28, 77–78 (1968).
    [CrossRef]
  54. T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983).
    [CrossRef]
  55. P. Yeh, “Autocorrelation of ultrashort optical pulses using polarization interferometry,” Opt. Lett. 8, 330–332 (1983).
    [CrossRef]
  56. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
    [CrossRef]
  57. M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
    [CrossRef]
  58. R. Wyatt and E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
    [CrossRef]
  59. P. Bowlan and R. Trebino, “Complete single-shot measurement of arbitrary nanosecond laser pulses in time,” Opt. Express 19, 1367–1377 (2011).
    [CrossRef]
  60. R. Trebino, “Ultrafast Optics Group in Georgia Institute of Technology,” http://frog.gatech.edu/ .

2013 (6)

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Y. Pu, W. Wang, R. B. Dorshow, B. B. Das, and R. R. Alfano, “Review of ultrafast fluorescence polarization spectroscopy [Invited],” Appl. Opt. 52, 917–929 (2013).
[CrossRef]

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[CrossRef]

2012 (7)

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[CrossRef]

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
[CrossRef]

T. C. Wong, J. Ratner, V. Chauhan, J. Cohen, P. M. Vaughan, L. Xu, A. Consoli, and R. Trebino, “Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating,” J. Opt. Soc. Am. B 29, 1237–1244 (2012).
[CrossRef]

T. C. Wong, J. Ratner, and R. Trebino, “Simultaneous measurement of two different-color ultrashort pulses on a single shot,” J. Opt. Soc. Am. B 29, 1889–1893 (2012).
[CrossRef]

K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, “Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Opt. Lett. 37, 3891–3893 (2012).
[CrossRef]

2011 (3)

2010 (1)

D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).

2008 (3)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25, A70–A80 (2008).
[CrossRef]

D. Lee, P. Gabolde, and R. Trebino, “Toward single-shot measurement of broadband ultrafast continuum,” J. Opt. Soc. Am. B 25, A25–A33 (2008).
[CrossRef]

2007 (1)

E. F. Bernstein, “Laser tattoo removal,” Semin. Plast. Surg. 21, 175–192 (2007).
[CrossRef]

2004 (2)

S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Extremely simple device for measuring 20-fs pulses,” Opt. Lett. 29, 1025–1027 (2004).
[CrossRef]

N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D 37, 638–643 (2004).

2003 (3)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003).
[CrossRef]

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

2002 (1)

2001 (2)

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
[CrossRef]

1999 (2)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999).
[CrossRef]

1998 (2)

R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

1996 (2)

X.-H. Hu and T. Juhasz, “Study of corneal ablation with picosecond laser pulses at 211  nm and 263  nm,” Lasers Surg. Med. 18, 373–380 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

1995 (3)

J. M. Krauss and C. A. Puliafito, “Lasers in ophthalmology,” Lasers Surg. Med. 17, 102–159 (1995).
[CrossRef]

M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74, 1194–1199 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

1994 (2)

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef]

M. B. Strigin and A. N. Chudinov, “Cutting of glass by picosecond laser radiation,” Opt. Commun. 106, 223–226 (1994).
[CrossRef]

1993 (1)

S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993).
[CrossRef]

1992 (1)

1989 (3)

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
[CrossRef]

1986 (1)

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” Opt. Quantum Electron. 18, 145–154 (1986).
[CrossRef]

1983 (2)

T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983).
[CrossRef]

P. Yeh, “Autocorrelation of ultrashort optical pulses using polarization interferometry,” Opt. Lett. 8, 330–332 (1983).
[CrossRef]

1981 (1)

R. Wyatt and E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

1979 (1)

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

1974 (1)

C. Lee and S. Jayaraman, “Measurement of ultrashort optical pulses by two-photon photoconductivity techniques,” Opto-electronics 6, 115–120 (1974).
[CrossRef]

1972 (1)

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

1970 (1)

H. P. Weber and H. G. Danielmeyer, “Multimode effects in intensity correlation measurements,” Phys. Rev. A 2, 2074–2079 (1970).
[CrossRef]

1968 (1)

H. P. Weber and R. Dändliker, “Method for measurement the shape asymmetry of picosecond light pulses,” Phys. Lett. A 28, 77–78 (1968).
[CrossRef]

1967 (2)

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

1962 (1)

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

Akturk, S.

Alfano, R. R.

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Aquila, A. L.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

Arndt, K. A.

N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
[CrossRef]

Atanasov, P. A.

N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D 37, 638–643 (2004).

Attwood, D. T.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Bagga, K.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Bartels, R.

Bello-Silva, M. S.

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Bernstein, E. F.

E. F. Bernstein, “Laser tattoo removal,” Semin. Plast. Surg. 21, 175–192 (2007).
[CrossRef]

Birngruber, R.

G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003).
[CrossRef]

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef]

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
[CrossRef]

Bloembergen, N.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Bowlan, P.

Brandi, F.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Busch, S.

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef]

Cao, Q.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

Chang, Z.

Chauhan, V.

Cheng, J.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Chichkov, B.

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Chini, M.

Chudinov, A. N.

M. B. Strigin and A. N. Chudinov, “Cutting of glass by picosecond laser radiation,” Opt. Commun. 106, 223–226 (1994).
[CrossRef]

Cingolani, R.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Cohen, J.

Consoli, A.

Dändliker, R.

H. P. Weber and R. Dändliker, “Method for measurement the shape asymmetry of picosecond light pulses,” Phys. Lett. A 28, 77–78 (1968).
[CrossRef]

Danielmeyer, H. G.

H. P. Weber and H. G. Danielmeyer, “Multimode effects in intensity correlation measurements,” Phys. Rev. A 2, 2074–2079 (1970).
[CrossRef]

Danilevicius, P.

Das, B. B.

Das, G.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Dearden, G.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Deutsch, T. F.

B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

Di Fabrizio, E.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Diaspro, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Dienes, A.

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Dobi, E. T.

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

Dörr, F.

T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983).
[CrossRef]

Dorshow, R. B.

Dover, J. S.

N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
[CrossRef]

Dudley, J.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

Eduardo, C. P.

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Eichler, J.

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

Esteves-Oliveira, M.

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Fadeeva, E.

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Feit, M. D.

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Fuji, T.

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Fujimoto, J. G.

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
[CrossRef]

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

Gabolde, P.

Gagnon, J.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Gedvilas, M.

B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[CrossRef]

Genovese, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Gopalakrishnan, A.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Goßler, C.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Goulielmakis, E.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Gu, X.

Gualano, A.

R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).

Gullikson, E. M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Hefferle, P.

T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983).
[CrossRef]

Hellwarth, R. W.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

Hermans, M.

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Hibi, T.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Hodgson, R. T.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Hofstetter, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Hu, X.-H.

X.-H. Hu and T. Juhasz, “Study of corneal ablation with picosecond laser pulses at 211  nm and 263  nm,” Lasers Surg. Med. 18, 373–380 (1996).
[CrossRef]

Huettmann, G.

G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003).
[CrossRef]

Hunter, A. M.

N. I. Tankovich, A. M. Hunter, and K. Y. Tang, “Hair removal device and method,” U.S. patent6,267,771 (July31, 2001).

Hutchinson, M. H. R.

S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993).
[CrossRef]

Imamova, S. E.

N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D 37, 638–643 (2004).

Imamura, S.

Indrišiunas, S.

B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[CrossRef]

Intartaglia, R.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Jayaraman, S.

C. Lee and S. Jayaraman, “Measurement of ultrashort optical pulses by two-photon photoconductivity techniques,” Opto-electronics 6, 115–120 (1974).
[CrossRef]

Jiang, T.

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Juhasz, T.

R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).

X.-H. Hu and T. Juhasz, “Study of corneal ablation with picosecond laser pulses at 211  nm and 263  nm,” Lasers Surg. Med. 18, 373–380 (1996).
[CrossRef]

Jungnickel, K.

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef]

Juodkazis, S.

Kar, A. K.

A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999).
[CrossRef]

Kawakami, R.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Khabbaz, M. G.

A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999).
[CrossRef]

Kienberger, R.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Kim, B.-M.

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

Kimmel, M.

Kleineberg, U.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Kobayashi, T.

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17, 658–660 (1992).
[CrossRef]

Koch, J.

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Köhler, K.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Komashko, A. M.

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

Koroleva, A.

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Kozawa, Y.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Krauss, J. M.

J. M. Krauss and C. A. Puliafito, “Lasers in ophthalmology,” Lasers Surg. Med. 17, 102–159 (1995).
[CrossRef]

Krausz, F.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Krueger, R. R.

R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Kunzer, M.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Lampert, F.

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Lee, C.

C. Lee and S. Jayaraman, “Measurement of ultrashort optical pulses by two-photon photoconductivity techniques,” Opto-electronics 6, 115–120 (1974).
[CrossRef]

Lee, D.

Lee, J.

D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Liu, C.-S.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Liu, D.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Liu, P. L.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Luan, S.

S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993).
[CrossRef]

Makropoulou, M. I.

A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999).
[CrossRef]

Malinauskas, M.

Marchi, V.

R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).

Marinero, E. E.

R. Wyatt and E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

McClung, F. J.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

Metelitsa, A.

N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
[CrossRef]

Mindl, T.

T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Moser, R.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Nedialkov, N. N.

N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D 37, 638–643 (2004).

Nemoto, T.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Niemz, M. H.

M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74, 1194–1199 (1995).
[CrossRef]

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

Noh, J.

D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

O’Shea, P.

Paik, B.

D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).

Penzkofer, A.

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” Opt. Quantum Electron. 18, 145–154 (1986).
[CrossRef]

Perrie, W.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Petrell, K.

N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
[CrossRef]

Pletschen, W.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Poprawe, R.

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Povia, M.

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Pu, Y.

Puliafito, C. A.

J. M. Krauss and C. A. Puliafito, “Lasers in ophthalmology,” Lasers Surg. Med. 17, 102–159 (1995).
[CrossRef]

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
[CrossRef]

Raciukaitis, G.

B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[CrossRef]

Radt, B.

G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003).
[CrossRef]

Ratner, J.

Reidt, S.

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

Rentzepis, P. M.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Rhodes, M.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[CrossRef]

Rubenchik, A. M.

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Saedi, N.

N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
[CrossRef]

Sato, A.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Sato, S.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Sawada, K.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Schmidt, R.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Schneider, S.

T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983).
[CrossRef]

Schoenlein, R. W.

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

Schultze, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Schwarz, U. T.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Serafetinides, A. A.

A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999).
[CrossRef]

Serbin, J.

G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003).
[CrossRef]

Shang, S.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Shank, C. V.

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Shapiro, S. L.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Shin, D.

D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Shreenath, A. P.

Silva, L. B. D.

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

Smith, R. A.

S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993).
[CrossRef]

Sohn, H.

D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).

Sperber, P.

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” Opt. Quantum Electron. 18, 145–154 (1986).
[CrossRef]

Steinmeyer, G.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[CrossRef]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[CrossRef]

Stern, D.

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

Strigin, M. B.

M. B. Strigin and A. N. Chudinov, “Cutting of glass by picosecond laser radiation,” Opt. Commun. 106, 223–226 (1994).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Takagi, Y.

Tang, K. Y.

N. I. Tankovich, A. M. Hunter, and K. Y. Tang, “Hair removal device and method,” U.S. patent6,267,771 (July31, 2001).

Tankovich, N. I.

N. I. Tankovich, A. M. Hunter, and K. Y. Tang, “Hair removal device and method,” U.S. patent6,267,771 (July31, 2001).

Trebino, R.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[CrossRef]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[CrossRef]

T. C. Wong, J. Ratner, and R. Trebino, “Simultaneous measurement of two different-color ultrashort pulses on a single shot,” J. Opt. Soc. Am. B 29, 1889–1893 (2012).
[CrossRef]

T. C. Wong, J. Ratner, V. Chauhan, J. Cohen, P. M. Vaughan, L. Xu, A. Consoli, and R. Trebino, “Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating,” J. Opt. Soc. Am. B 29, 1237–1244 (2012).
[CrossRef]

P. Bowlan and R. Trebino, “Complete single-shot measurement of arbitrary nanosecond laser pulses in time,” Opt. Express 19, 1367–1377 (2011).
[CrossRef]

D. Lee, P. Gabolde, and R. Trebino, “Toward single-shot measurement of broadband ultrafast continuum,” J. Opt. Soc. Am. B 25, A25–A33 (2008).
[CrossRef]

L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25, A70–A80 (2008).
[CrossRef]

S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Extremely simple device for measuring 20-fs pulses,” Opt. Lett. 29, 1025–1027 (2004).
[CrossRef]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
[CrossRef]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Uiberacker, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Unger, C.

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Vaughan, P. M.

Vogel, A.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef]

Voisiat, B.

B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[CrossRef]

Wagner, J.

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Wang, W.

Wang, X.

Watkins, K.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Weber, H. P.

H. P. Weber and H. G. Danielmeyer, “Multimode effects in intensity correlation measurements,” Phys. Rev. A 2, 2074–2079 (1970).
[CrossRef]

H. P. Weber and R. Dändliker, “Method for measurement the shape asymmetry of picosecond light pulses,” Phys. Lett. A 28, 77–78 (1968).
[CrossRef]

Wecht, K. W.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Wehner, M.

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Windeler, R. S.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

Wong, T. C.

Wu, Y.

Wyatt, R.

R. Wyatt and E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

Xu, L.

Yabushita, A.

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Yakovlev, V. S.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Yeh, P.

Yen, R.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Yokoyama, H.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Yoshihara, K.

Zeek, E.

Zhang, Q.

Zhao, K.

Zhao, Q.

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Zhou, F.

S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993).
[CrossRef]

Zysset, B.

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

R. Wyatt and E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

Appl. Phys. A (2)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012).
[CrossRef]

Appl. Phys. B (3)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989).
[CrossRef]

T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983).
[CrossRef]

Appl. Phys. Lett. (4)

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Arch. Dermatol. (1)

N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012).
[CrossRef]

Arch. Ophthalmol. (1)

D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

J. Appl. Phys. (2)

B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003).
[CrossRef]

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

J. Dent. Res. (1)

M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74, 1194–1199 (1995).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D 37, 638–643 (2004).

J. Refract. Surg. (1)

R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).

Laser Photon. Rev. (1)

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013).
[CrossRef]

Lasers Med. Sci. (2)

A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999).
[CrossRef]

M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013).
[CrossRef]

Lasers Surg. Med. (4)

X.-H. Hu and T. Juhasz, “Study of corneal ablation with picosecond laser pulses at 211  nm and 263  nm,” Lasers Surg. Med. 18, 373–380 (1996).
[CrossRef]

A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef]

J. M. Krauss and C. A. Puliafito, “Lasers in ophthalmology,” Lasers Surg. Med. 17, 102–159 (1995).
[CrossRef]

B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989).
[CrossRef]

Meas. Sci. Technol. (1)

S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993).
[CrossRef]

Opt. Commun. (2)

M. B. Strigin and A. N. Chudinov, “Cutting of glass by picosecond laser radiation,” Opt. Commun. 106, 223–226 (1994).
[CrossRef]

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[CrossRef]

Opt. Lett. (7)

Opt. Quantum Electron. (1)

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” Opt. Quantum Electron. 18, 145–154 (1986).
[CrossRef]

Opto-electronics (1)

C. Lee and S. Jayaraman, “Measurement of ultrashort optical pulses by two-photon photoconductivity techniques,” Opto-electronics 6, 115–120 (1974).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013).
[CrossRef]

Phys. Lett. A (1)

H. P. Weber and R. Dändliker, “Method for measurement the shape asymmetry of picosecond light pulses,” Phys. Lett. A 28, 77–78 (1968).
[CrossRef]

Phys. Procedia (1)

B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011).
[CrossRef]

Phys. Rev. A (1)

H. P. Weber and H. G. Danielmeyer, “Multimode effects in intensity correlation measurements,” Phys. Rev. A 2, 2074–2079 (1970).
[CrossRef]

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Proc. SPIE (2)

G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003).
[CrossRef]

R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012).
[CrossRef]

Sci. Rep. (1)

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[CrossRef]

Science (1)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Semin. Plast. Surg. (1)

E. F. Bernstein, “Laser tattoo removal,” Semin. Plast. Surg. 21, 175–192 (2007).
[CrossRef]

Other (3)

N. I. Tankovich, A. M. Hunter, and K. Y. Tang, “Hair removal device and method,” U.S. patent6,267,771 (July31, 2001).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

R. Trebino, “Ultrafast Optics Group in Georgia Institute of Technology,” http://frog.gatech.edu/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration showing the calculation of (a) temporal range and (b) longitudinal smearing in PG XFROG with tilted pulse front in the reference pulse. The white and gray ellipses represent the untilted unknown pulse and the tilted reference pulse, respectively. The arrows represent the propagation directions of the two beams. Here, the tilted reference pulse propagates along the x axis, and the unknown pulse propagates at an angle, θ, with respect to the x axis. Using simple trigonometry, the temporal range of the measurement, ΔT, and the longitudinal smearing, δt, given in Eqs. (1) and (2) can be derived, where d is the beam diameter, L is the thickness of the nonlinear medium, and α is the PFT angle.

Fig. 2.
Fig. 2.

Schematic of our ps XFROG, implemented with a polarization-gate geometry. The unknown pulse to be measured is shown in red, and the tilted reference pulse is in orange. A diffraction grating with 1200lines/mm was used generate the PFT. The first-order diffraction, propagating parallel to the normal of the grating, was used as the reference pulse. The surface of the diffraction grating was imaged onto the nonlinear medium to eliminate all the spatiotemporal distortions except PFT. The two beams crossed at an angle inside the nonlinear medium, mapping temporal delay between the two beams to the transverse position for single-shot measurement. The nonlinear medium was imaged onto the camera to map delay onto the transverse position of camera. The signal was filtered by the crossed polarizers and spectrally resolved to generate an XFROG trace.

Fig. 3.
Fig. 3.

(a) Measured and (b) retrieved XFROG traces of a double pulse with pulse separation of 4.7ps with G-error of 1.37%. (c) Retrieved temporal and (d) spectral intensity and phase. The black solid line represents the spectrum measured by a spectrometer. The retrieved pulse separation was 4770 fs, and the FWHM was 1700 fs.

Fig. 4.
Fig. 4.

(a) Measured and (b) retrieved XFROG traces of a double pulse with pulse separation of 24ps with G-error of 1.73%. (c) Retrieved temporal and (d) spectral intensity and phase. The black solid line represents the spectrum measured by a spectrometer. The retrieved pulse separation was 24,400 fs, and the FWHM was 1780 fs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔT=dctan(αθ),
δt=Lc(1cosαcos(αθ)),

Metrics