Abstract

Ge surfaces have been investigated with optical second-harmonic generation (SHG) spectroscopy in the range from 1.78 to 3.44 eV. The spectra reveal surface-specific resonances corresponding to the E1 and E1+Δ1 bulk transitions. The splitting between the surface E1 and E1+Δ1 resonances is found to be larger than the bulk value. It is suggested this is caused by surface-induced band bending through a Rashba effect. By probing metal-oxide-semiconductor structures it is found that contributions from electric-field-induced SHG from the space charge region are negligible for Ge within the probed spectral range. Strong second-harmonic resonances in the 2.6–3.2 eV range are observed and tentatively assigned to Ge–Ge bonds at the interface.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription