Abstract

We present a numerical design optimization of step-index ZBLAN fibers for developing mid-infrared (IR) supercontinuum sources with spectra covering the 1–4.5 μm regime using direct pumping with 10 ps pulses (FWHM) from mode-locked Yb (12.5 kW peak power) and Er lasers (10 kW peak power). Even with optimum NA and core diameter to minimize confinement loss and give the most suitable dispersion and nonlinearity, the Yb pump-laser cannot push the spectrum beyond 1.52 μm, whereas the Er laser can push the spectrum to 4.15 μm. We further consider the optimum placement of a 20 cm taper to broaden the spectrum. This does not considerably broaden the Yb-pumped spectrum, whereas the Er-pumped spectrum can be extended to 4.5 μm through mid-IR dispersive waves and tunneling solitons.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum—broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
    [CrossRef]
  2. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [CrossRef]
  3. S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 1144–1170 (2005).
    [CrossRef]
  4. C. A. Michaels, T. Masiello, and P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538–543 (2009).
    [CrossRef]
  5. M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).
  6. H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [CrossRef]
  7. F. K. Tittel and D. Richter, “Mid-infrared laser applications in spectroscopy in solid-state mid-infrared laser sources,” in Solid State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).
  8. A. Mukherjee, S. V. der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49, 2072–2078 (2010).
    [CrossRef]
  9. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakander, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
    [CrossRef]
  10. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
    [CrossRef]
  11. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
    [CrossRef]
  12. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012).
    [CrossRef]
  13. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
    [CrossRef]
  14. V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” http://www.sciencedirect.com/science/article/pii/S0022309313000173 (2013).
  15. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  16. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [CrossRef]
  17. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
    [CrossRef]
  18. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [CrossRef]
  19. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 50–57 (2006).
    [CrossRef]
  20. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34, 3616–3618 (2009).
    [CrossRef]
  21. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
    [CrossRef]
  22. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [CrossRef]
  23. M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
    [CrossRef]
  24. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
    [CrossRef]
  25. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
    [CrossRef]
  26. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [CrossRef]
  27. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakander, and A. Chan, “Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
    [CrossRef]
  28. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [CrossRef]
  29. C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
    [CrossRef]
  30. J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. Loh, D. Richardson, and M. Ibsen, “1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol. 29, 3461–3469 (2011).
    [CrossRef]
  31. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
    [CrossRef]
  32. C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011).
    [CrossRef]
  33. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
    [CrossRef]
  34. FiberLabs, “Fluoride fibers in stock,” http://www.fiberlabs-inc.com/fiber-stock.htm (2012).
  35. U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
    [CrossRef]
  36. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011).
    [CrossRef]
  37. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
    [CrossRef]
  38. OneFive GmbH, “Genki series,” http://www.onefive.com/genki.html (2012).
  39. Calmar Laser, Inc., “C-band femtosecond fiber laser bench top,” http://www.calmarlaser.com/docs/FPL_benchtop.pdf (2013).
  40. 3SPGroup, “Miniaturized pulsed laser transmitter,” http://www.3spgroup.com/3SPG/ProductsFlas.php?locale=enLine_no=23sub_category_id=5413cat_category_id=402 (2013).
  41. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  42. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef]
  43. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005).
    [CrossRef]
  44. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
    [CrossRef]
  45. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [CrossRef]
  46. N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
    [CrossRef]
  47. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
    [CrossRef]
  48. S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
    [CrossRef]
  49. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010).
    [CrossRef]
  50. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
    [CrossRef]
  51. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum generation in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
    [CrossRef]
  52. M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).
  53. J. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  54. T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
    [CrossRef]
  55. L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion of fluoride glasses,” Appl. Phys. Lett. 33, 50–56 (1994).
  56. Thorlabs, “Fluoride fibers in stock,” http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7062 (2013).
  57. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).
  58. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
    [CrossRef]
  59. J. Lægsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
  60. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [CrossRef]
  61. M. H. Frosz, “Supercontinuum generation in photonic crystal fibers,” Ph.D. thesis, Department of Communications, Optics, and Materials, 2006.
  62. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007).
    [CrossRef]
  63. A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulations,” www.photonics.incubadora.fapesp.br .
  64. A. M. Heidt, “Efficient adaptive step size method for simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984–3991 (2009).
    [CrossRef]
  65. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
  66. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  67. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
    [CrossRef]
  68. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  69. P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis, Department of Photonics Engineering, Technical University of Denmark, 2009.
  70. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  71. N. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
    [CrossRef]
  72. S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011).
    [CrossRef]
  73. S. Coen, D. A. Wardle, and J. D. Harvey, “Observation of non-phase-matched parametric amplification in resonant nonlinear optics,” Phys. Rev. Lett. 89, 273901 (2002).
    [CrossRef]
  74. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [CrossRef]
  75. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef]
  76. A. C. Judge, O. Bang, and C. M. de Sterke, “Theory of Dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 27, 2195–2202 (2010).
    [CrossRef]
  77. K. E. Webb, Y. Q. Xu, M. Erkintalo, and S. G. Murdoch, “Generalized dispersive wave emission in nonlinear fiber optics,” Opt. Lett. 38, 151–153 (2013).
    [CrossRef]
  78. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
    [CrossRef]
  79. F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
    [CrossRef]

2013 (3)

2012 (8)

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum—broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef]

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakander, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[CrossRef]

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012).
[CrossRef]

2011 (9)

C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011).
[CrossRef]

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. Loh, D. Richardson, and M. Ibsen, “1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol. 29, 3461–3469 (2011).
[CrossRef]

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
[CrossRef]

C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011).
[CrossRef]

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum generation in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakander, and A. Chan, “Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
[CrossRef]

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011).
[CrossRef]

2010 (7)

2009 (7)

2008 (3)

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[CrossRef]

N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).

2007 (4)

2006 (5)

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 50–57 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

2005 (4)

2004 (3)

2003 (2)

N. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

2002 (2)

2000 (1)

1995 (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

1994 (1)

L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion of fluoride glasses,” Appl. Phys. Lett. 33, 50–56 (1994).

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1990 (1)

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

1989 (1)

1978 (1)

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

1977 (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

1973 (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Aggarwal, I. D.

Agger, C.

Agger, S. D.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).

Alam, S.-U.

Alexander, V. V.

Andersen, T. V.

Audry, L.

Bai, Y.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).

Bang, O.

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum—broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[CrossRef]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011).
[CrossRef]

C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

A. C. Judge, O. Bang, and C. M. de Sterke, “Theory of Dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 27, 2195–2202 (2010).
[CrossRef]

A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
[CrossRef]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[CrossRef]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[CrossRef]

N. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
[CrossRef]

Barnes, N. P.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

Barviau, B.

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

Biancalana, F.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011).
[CrossRef]

Birks, T.

Birks, T. A.

Bjarklev, A.

Brambilla, G.

N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Broderick, N. G. R.

N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

Buccoliero, D.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

Chan, A.

Chau, A. H. L.

Chen, K.

Chen, Z.

Cheng, M.-Y.

Chu, P. M.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

S. Coen, D. A. Wardle, and J. D. Harvey, “Observation of non-phase-matched parametric amplification in resonant nonlinear optics,” Phys. Rev. Lett. 89, 273901 (2002).
[CrossRef]

Darvish, S. R.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).

de Sterke, C. M.

Dekker, S. A.

Deng, Y.

der Porten, S. V.

Duan, Z.

M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Dupont, S.

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Efimov, A.

Eggleton, B. J.

Erkintalo, M.

Falk, P.

Feng, X.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. Loh, D. Richardson, and M. Ibsen, “1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol. 29, 3461–3469 (2011).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Freeman, M. J.

French, W. G.

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Frosz, M. H.

Galvanauskas, A.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion of fluoride glasses,” Appl. Phys. Lett. 33, 50–56 (1994).

Gao, W.

M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

Geng, J.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34, 3616–3618 (2009).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

George, A. K.

Giessen, H.

Gordon, J. P.

Granzow, N.

Hansen, K. P.

Harvey, J. D.

Haus, H. A.

Hegde, R. S.

Heidt, A. M.

Hilligsøe, K. M.

Horak, P.

J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. Loh, D. Richardson, and M. Ibsen, “1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol. 29, 3461–3469 (2011).
[CrossRef]

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Hudson, D. D.

Hult, J.

Ibsen, M.

Ippen, E. P.

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Islam, M. N.

Izawa, T.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Jackson, S. D.

Jakobsen, C.

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

Jiang, S.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34, 3616–3618 (2009).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

Johansen, J.

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

Johansen, M.

Judge, A. C.

Keiding, S.

Keiding, S. R.

Knight, J. C.

Knight, K.

Knox, W. H.

Kristiansen, R.

Kuan, K.

Kudlinski, A.

Kuhlmey, B. T.

Kulkarni, O. P.

Kumar, M.

Lægsgaard, J.

Larsen, C.

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

Larsen, J. J.

Lelek, M.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Leonhardt, R.

Leon-Saval, S.

Li, E.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Liao, M.

M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

Lin, C.

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Loh, W.

Lu, F.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Luo, T.

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34, 3616–3618 (2009).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

Lyngsø, J. K.

Mägi, E. C.

Manzur, T.

Masiello, T.

Mason, M.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Maze, G.

Mazé, G.

Michaels, C. A.

Michalska, M.

Mimura, Y.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Møller, U.

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

Mølmer, K.

Monro, T. M.

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012).
[CrossRef]

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Moselund, P. M.

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[CrossRef]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum—broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[CrossRef]

P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis, Department of Photonics Engineering, Technical University of Denmark, 2009.

Mukherjee, A.

Murdoch, S. G.

Mussot, A.

Nakai, T.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Neelakander, M.

Neubert, R. H. H.

S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 1144–1170 (2005).
[CrossRef]

Nguyen, V. T.

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Nielsen, C. K.

Nikolov, N.

Noda, Y.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Norimatsu, N.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Oermann, M. R.

Ohishi, Y.

M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

Pant, R.

Patel, C. K. N.

Paulsen, H. N.

Petersen, C.

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Petrovich, M.

N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

Peyghambarian, N.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

Podlipensky, A.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011).
[CrossRef]

Poletti, F.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Popov, S. V.

Poulain, M.

Povlsen, J. H.

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Pricking, S.

Ramsay, J.

Razeghi, M.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).

Richardson, D.

Richardson, D. J.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Richter, D.

F. K. Tittel and D. Richter, “Mid-infrared laser applications in spectroscopy in solid-state mid-infrared laser sources,” in Solid State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).

Rishøj, L.

Rottwitt, K.

Rulkov, A. B.

Russell, P. St. J.

Sanghera, J. S.

Schleijpen, R.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

Schmidt, M. A.

Shaw, L. B.

Shi, J.

Shibata, N.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Shinbori, O.

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

Skorobogatiy, M.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Slivken, S.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).

Sørensen, S. T.

Sørensen, T.

Stark, S. P.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[CrossRef]

Steffensen, H.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

Stolen, R. H.

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Suzuki, T.

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

Swiderski, J.

Takeda, A.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Taylor, A. J.

Taylor, J. R.

Teh, P. S.

Terry, F. L.

Thøgersen, J.

Thomsen, C. L.

Tittel, F. K.

F. K. Tittel and D. Richter, “Mid-infrared laser applications in spectroscopy in solid-state mid-infrared laser sources,” in Solid State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).

Tomlinson, W. J.

Travers, J. C.

Tverjanovich, A. S.

Ung, B.

van den Heuvel, J. C.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

van Putten, F. J. M.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

Vukovic, N.

N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

Wadsworth, W.

Wadsworth, W. J.

Wang, P.

L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion of fluoride glasses,” Appl. Phys. Lett. 33, 50–56 (1994).

Wang, Q.

Wardle, D. A.

S. Coen, D. A. Wardle, and J. D. Harvey, “Observation of non-phase-matched parametric amplification in resonant nonlinear optics,” Phys. Rev. Lett. 89, 273901 (2002).
[CrossRef]

Wartewig, S.

S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 1144–1170 (2005).
[CrossRef]

Webb, K. E.

White, R. T.

Winful, H. G.

Wondraczek, L.

Wu, J.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef]

Xin Yan, T. S.

Xu, Y. Q.

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Yan, X.

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

Zhang, L.

L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion of fluoride glasses,” Appl. Phys. Lett. 33, 50–56 (1994).

Adv. Drug Delivery Rev. (1)

S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 1144–1170 (2005).
[CrossRef]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010).
[CrossRef]

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990).
[CrossRef]

L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion of fluoride glasses,” Appl. Phys. Lett. 33, 50–56 (1994).

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Appl. Spectrosc. (1)

Electron. Lett. (1)

C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006).
[CrossRef]

N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008).
[CrossRef]

J. Lightwave Technol. (4)

J. Non-Cryst. Solids (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

J. Opt. (1)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010).
[CrossRef]

J. Opt. Soc. Am. B (8)

N. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakander, and A. Chan, “Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
[CrossRef]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011).
[CrossRef]

A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
[CrossRef]

A. C. Judge, O. Bang, and C. M. de Sterke, “Theory of Dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 27, 2195–2202 (2010).
[CrossRef]

Opt. Express (18)

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[CrossRef]

Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[CrossRef]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[CrossRef]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 50–57 (2006).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef]

J. Lægsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013).
[CrossRef]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[CrossRef]

M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
[CrossRef]

S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
[CrossRef]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef]

Opt. Fiber Technol. (1)

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[CrossRef]

Opt. Lett. (7)

Opt. Mater. Express (1)

Opt. Photon. News (1)

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).

Phys. Rev. A (1)

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

S. Coen, D. A. Wardle, and J. D. Harvey, “Observation of non-phase-matched parametric amplification in resonant nonlinear optics,” Phys. Rev. Lett. 89, 273901 (2002).
[CrossRef]

Proc. SPIE (2)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum—broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Other (13)

FiberLabs, “Fluoride fibers in stock,” http://www.fiberlabs-inc.com/fiber-stock.htm (2012).

OneFive GmbH, “Genki series,” http://www.onefive.com/genki.html (2012).

Calmar Laser, Inc., “C-band femtosecond fiber laser bench top,” http://www.calmarlaser.com/docs/FPL_benchtop.pdf (2013).

3SPGroup, “Miniaturized pulsed laser transmitter,” http://www.3spgroup.com/3SPG/ProductsFlas.php?locale=enLine_no=23sub_category_id=5413cat_category_id=402 (2013).

F. K. Tittel and D. Richter, “Mid-infrared laser applications in spectroscopy in solid-state mid-infrared laser sources,” in Solid State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” http://www.sciencedirect.com/science/article/pii/S0022309313000173 (2013).

P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis, Department of Photonics Engineering, Technical University of Denmark, 2009.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulations,” www.photonics.incubadora.fapesp.br .

M. H. Frosz, “Supercontinuum generation in photonic crystal fibers,” Ph.D. thesis, Department of Communications, Optics, and Materials, 2006.

J. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Thorlabs, “Fluoride fibers in stock,” http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7062 (2013).

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

(a) Confinement loss αconf for fibers with NA=0.30 and core diameter Dc between 3 and 7 μm. (b) ZBLAN material loss αm (solid) provided by FiberLabs Inc., Japan, and extrapolated loss (dashed–dotted) out to 5 μm for SC simulations. (c) 1 dB loss edge λ1dB evaluated for α=αconf+αm.

Fig. 2.
Fig. 2.

Dispersive properties of ZBLAN fibers. (a) Dispersion for fibers with NA=0.30 and Dc between 3 and 7 μm. (b) Zero dispersion wavelength λZDW for NA between 0.20 and 0.30 and Dc between 4.5 and 7 μm.

Fig. 3.
Fig. 3.

(a) Calculated Aeff(λ) for fibers with core diameter of 7 μm and NA between 0.22 and 0.60. (b) Fiber nonlinearity γ(λ). (c) Measured ZBLAN and fused silica Raman gain scaled to λpEr=1550nm [32,58].

Fig. 4.
Fig. 4.

ZBLAN fiber dispersion (a) and nonlinearity (b) at 1064 nm versus core diameter for NA between 0.22 and 0.60. (c) Walk-off length LW between the pump at 1064 nm and the first Raman Stokes line R2s(1) versus core diameter for NA=0.220.60.

Fig. 5.
Fig. 5.

(a) Contour plot of SCG in a 10 m ZBLAN SIF with core diameter 5 μm and NA=0.30. The output spectrum (dispersion profile) is shown above (below) for the Dc=5μm fiber (black) and a Dc=4μm fiber (red dashed). The 30dB/nm IR edge λEdgeIR (vertical red line) is at 1.52 μm for both fibers. (b) Average power (black) and λEdgeIR (red) for the fibers with Dc=5μm (solid) and Dc=4μm (dashed).

Fig. 6.
Fig. 6.

(a) 2-16-2 taper used to increase the spectral broadening. (b) Contour plot of SCG in tapered 5 μm ZBLAN fiber with taper waist at 3 μm and taper start at 1 m. The output spectrum is shown above, and the dispersion shown below of the uniform and tapered fiber.

Fig. 7.
Fig. 7.

Integrated IR power from 1.4 to 2.0 μm (a) and λEdgeIR (b) after 10 m tapered fiber versus taper start. The solid lines indicate tapered fibers while the dashed lines indicate the uniform fiber. The vertical dashed lines show the position where the different Raman lines start to appear.

Fig. 8.
Fig. 8.

Dispersion (a) and nonlinearity (b) at 1550 nm for ZBLAN fibers with core diameter between 4 and 7 μm and NA between 0.22 and 0.30. (c) MI gain for fiber with NA=0.30 and core diameter between 6 and 7 μm. (d) Group velocity (GV) for fibers with NA=0.30 and core diameter between 5.7 and 7 μm.

Fig. 9.
Fig. 9.

Contour plots of 1550 nm pumped SCG in ZBLAN fibers with NA=0.30 and (a) L=10m, Dc=7μm, (b) L=10m, Dc=6μm, and (c) L=15m, Dc=5.7μm. The spectrum and spectrogram at the output is shown above the contour plot and the dispersion and MI gain profiles at fiber input are shown below.

Fig. 10.
Fig. 10.

(a) 2-16-2 taper with Dc=5.5μm at the taper waist used to change the fiber with Dc=7μm. Spectrograms showing the SC at L=8.02m at the end of the down taper part (b), at L=8.18m at the end of the taper waist (c), and at L=10m at the end of the fiber (d).

Fig. 11.
Fig. 11.

IR power content above 3.06 μm, PIR, and λEdgeIR for different taper configurations in the fiber with Dc=7μm. (a) For a fixed taper start at 8 m and varying taper waist. (b) For a fixed taper waist of 5.5 μm and varying taper start. (c) For a fixed taper start at 2.25 m and varying taper waist. (d) Contour plot of IR power versus taper waist and taper start. (e) Contour plot of IR edge versus taper waist and taper start.

Fig. 12.
Fig. 12.

Optimization of tapers in the 6 μm fiber. (a) IR power above 3.06 μm (black line) and IR spectral edge (red line) versus taper waist core diameter with taper start at 2 m. (b) IR power and IR edge (dashed lines show the value in a uniform fiber of the same length) for the optimum taper waist core diameter 5.45 μm versus taper start. (c) IR power (black line) and IR spectral edge (red line) versus taper waist core diameter with taper start at 16 m.

Fig. 13.
Fig. 13.

Optimization of tapers in the 5.7 μm fiber. (a) IR power above 3.06 μm (black line) and IR spectral edge (red line) versus taper waist core diameter with taper start at 15 m. (b) IR power and IR edge (dashed lines show the value in a uniform fiber of the same length) for the optimum taper waist core diameter 5.45 μm versus taper start. (c) IR power (black line) and IR spectral edge (red line) versus taper waist core diameter with taper start at 25 m.

Fig. 14.
Fig. 14.

Optimized uniform and tapered ZBLAN fibers yielding the widest mid-IR SC and highest mid-IR power. (red) L=25m of uniform Dc=5.7μm fiber, (dotted) L=25.3m of tapered Dc=5.7μm fiber (taper start at 25 m and taper waist at 5.45 μm), (blue) L=16.30m of tapered Dc=6.0μm fiber (taper start at 16 m and taper waist at 5.65 μm), and (purple) L=2.55m of tapered Dc=7μm (taper start at 2.25 m and taper waist at 5.45 μm).

Tables (1)

Tables Icon

Table 1. Optimum Taper Start and Taper Waist for Tapers Employed in the 5.7, 6, and 7 μm Core Fibers

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D(λ)=ddλ(λ22πcdβ(λ)dλ).
γ(λ)=n22πλAeff(λ).
D^=i[β(ω)β(ω0)β1(ωp)Ω+iα(ω)/2]N^=iγ(ω)[1+Ωω0]F{C(T)R(T)|C(TT)|2dT}.
γ(ω)=n2neff(ω0)ω0neff(ω)cAeff(ω)Aeff(ω0),
hR(T)=Θ(T)λRp2π2n2fR0gR(Ω)sin(ΩT)dΩ,
Nph(z)=cAeff(ω0)n2neff(ω0)×neff(ω)Aeff(ω)|C˜(z,ω)|2ωdω,
PSD(z,λ)νRc|A˜(z,ω)|2λ2,
S(z,t,ω)=|eiωtei[tt]2/tg2A(z,t)dt|2,

Metrics