Abstract

We examine the optical scattering from a variety of axially symmetric plasmonic nanoparticle dimers separated by nanoscale gaps, quantifying the role of classical nonlocality on their optical properties. Due to the rotational symmetry of the analyzed structures, a high degree of accuracy is achieved using a computational approach termed 2.5D modeling, in which a small number of simulations on a two-dimensional domain can replace a memory- and time-intensive simulation on a three-dimensional domain. We find that scattered light from dimers consisting of nanoparticles with flat surfaces, such as nanodisks, exhibits pronounced spectral shifts due to the nonlocality of the electron fluid; these significant shifts persist even at relatively large (>1nm) gap dimensions, where quantum tunneling effects are believed to be negligible. The 2.5D modeling technique accurately incorporates all responses due to any nonaxially symmetric eigenmodes of the system, such as dipolar and quadrupolar modes, thereby providing a complete characterization of the system for any excitation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef]
  2. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
    [CrossRef]
  3. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
    [CrossRef]
  4. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
    [CrossRef]
  5. S.-Y. Chen and A. A. Lazarides, “Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure,” J. Phys. Chem. C 113, 12167–12175 (2009).
    [CrossRef]
  6. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
    [CrossRef]
  7. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
    [CrossRef]
  8. E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20, 11005–11013 (2012).
    [CrossRef]
  9. G. Hajisalem, A. Ahmed, Y. Pang, and R. Gordon, “Plasmon hybridization for enhanced nonlinear optical response,” Opt. Express 20, 29923–29930 (2012).
    [CrossRef]
  10. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
    [CrossRef]
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef]
  12. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
    [CrossRef]
  13. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
    [CrossRef]
  14. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
    [CrossRef]
  15. R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
    [CrossRef]
  16. B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnol. 7, 433–437 (2012).
    [CrossRef]
  17. C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109–1116 (2013).
    [CrossRef]
  18. Y. A. Urzhumov, N. Landy, and D. R. Smith, “Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves,” J. Appl. Phys. 111, 053105 (2012).
    [CrossRef]
  19. C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
    [CrossRef]
  20. C. Cirac, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21, 9397–9406 (2013).
    [CrossRef]
  21. A. Eguiluz and J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14, 1347–1361 (1976).
    [CrossRef]
  22. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
    [CrossRef]
  23. J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
    [CrossRef]
  24. A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
    [CrossRef]
  25. A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
    [CrossRef]
  26. A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
    [CrossRef]
  27. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
    [CrossRef]
  28. A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
    [CrossRef]
  29. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
    [CrossRef]
  30. Comsol Multiphysics, http://www.comsol.com/ .
  31. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [CrossRef]
  32. G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012).
    [CrossRef]
  33. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
    [CrossRef]
  34. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
    [CrossRef]
  35. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
    [CrossRef]

2013 (5)

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109–1116 (2013).
[CrossRef]

C. Cirac, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21, 9397–9406 (2013).
[CrossRef]

J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[CrossRef]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[CrossRef]

2012 (13)

G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
[CrossRef]

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[CrossRef]

B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnol. 7, 433–437 (2012).
[CrossRef]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

Y. A. Urzhumov, N. Landy, and D. R. Smith, “Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves,” J. Appl. Phys. 111, 053105 (2012).
[CrossRef]

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
[CrossRef]

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20, 11005–11013 (2012).
[CrossRef]

G. Hajisalem, A. Ahmed, Y. Pang, and R. Gordon, “Plasmon hybridization for enhanced nonlinear optical response,” Opt. Express 20, 29923–29930 (2012).
[CrossRef]

2011 (3)

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

2010 (4)

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

2009 (5)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
[CrossRef]

S.-Y. Chen and A. A. Lazarides, “Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure,” J. Phys. Chem. C 113, 12167–12175 (2009).
[CrossRef]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

2008 (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

2006 (1)

2001 (1)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

1976 (1)

A. Eguiluz and J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14, 1347–1361 (1976).
[CrossRef]

Ahmed, A.

Aizpurua, J.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[CrossRef]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef]

Ambekar, R.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Arya, G.

B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnol. 7, 433–437 (2012).
[CrossRef]

Aubry, A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

Belacel, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Bigourdan, F.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Bjerneld, E. J.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

Bokor, J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Borisov, A. G.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[CrossRef]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Bryant, G. W.

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Chen, S.-Y.

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

S.-Y. Chen and A. A. Lazarides, “Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure,” J. Phys. Chem. C 113, 12167–12175 (2009).
[CrossRef]

Chilkoti, A.

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Cirac, C.

Ciracì, C.

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109–1116 (2013).
[CrossRef]

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20, 11005–11013 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

Coolen, L.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Dionne, J. A.

J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[CrossRef]

Dubertret, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Eguiluz, A.

A. Eguiluz and J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14, 1347–1361 (1976).
[CrossRef]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Fang, N.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Fernández-Domínguez, A. I.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
[CrossRef]

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

Fung, K. H.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Gao, B.

B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnol. 7, 433–437 (2012).
[CrossRef]

Garca-Vidal, F. J.

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

Garcia de Abajo, F. J.

A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

García de Abajo, F. J.

Garcia-Etxarri, A.

J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[CrossRef]

Gauthier, D. J.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Gordon, R.

Greffet, J. J.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Gunnarsson, L.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

Habert, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Hajisalem, G.

Halas, N. J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

Hill, R.

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Hill, R. T.

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

Horsfield, A. P.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
[CrossRef]

Hugonin, J. P.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Jauho, A.-P.

Javaux, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Käll, M.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

Kasemo, B.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

Kim, H. M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
[CrossRef]

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Knight, M. W.

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Ko, K. D.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Koh, A. L.

J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[CrossRef]

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Kumar, A.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Lafosse, X.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Landy, N.

Y. A. Urzhumov, N. Landy, and D. R. Smith, “Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves,” J. Appl. Phys. 111, 053105 (2012).
[CrossRef]

Lazarides, A. A.

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

S.-Y. Chen and A. A. Lazarides, “Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure,” J. Phys. Chem. C 113, 12167–12175 (2009).
[CrossRef]

Lee, P.-T.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

Lei, D. Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
[CrossRef]

Lin, J.-W.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

Lin, P.-T.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

Liu, G. L.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Lu, T.-W.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

Luo, Y.

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Maier, S. A.

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
[CrossRef]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

Maitre, A.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Manjavacas, A.

A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Marquier, F.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Michaelis de Vasconcellos, S.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Mock, J. J.

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
[CrossRef]

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

Mortensen, N. A.

Nam, J.-M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
[CrossRef]

Nordlander, P.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[CrossRef]

A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

Oldenburg, S. J.

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Pang, Y.

Pendry, J. B.

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109–1116 (2013).
[CrossRef]

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
[CrossRef]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

Petronis, S.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

Poutrina, E.

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

Quinn, J.

A. Eguiluz and J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14, 1347–1361 (1976).
[CrossRef]

Raza, S.

Romero, I.

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

Scholl, J.

J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[CrossRef]

Schuck, P. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Schwob, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Sebba, D. S.

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

Senellart, P.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Smith, D. R.

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109–1116 (2013).
[CrossRef]

C. Cirac, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21, 9397–9406 (2013).
[CrossRef]

E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20, 11005–11013 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

Y. A. Urzhumov, N. Landy, and D. R. Smith, “Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves,” J. Appl. Phys. 111, 053105 (2012).
[CrossRef]

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
[CrossRef]

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Suh, Y. D.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
[CrossRef]

Tao, A. R.

B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnol. 7, 433–437 (2012).
[CrossRef]

Teperik, T. V.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[CrossRef]

Toscano, G.

Toussaint, K. C.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Tsai, C.-Y.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

Tsai, Y.-J.

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
[CrossRef]

Urzhumov, Y.

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Urzhumov, Y. A.

C. Cirac, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21, 9397–9406 (2013).
[CrossRef]

Y. A. Urzhumov, N. Landy, and D. R. Smith, “Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves,” J. Appl. Phys. 111, 053105 (2012).
[CrossRef]

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Wiener, A.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
[CrossRef]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[CrossRef]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Wiley, B.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Wu, C.-Y.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Wubs, M.

Xu, H.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Zhang, P.

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001).
[CrossRef]

Chem. Phys. Chem. (1)

C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109–1116 (2013).
[CrossRef]

J. Appl. Phys. (1)

Y. A. Urzhumov, N. Landy, and D. R. Smith, “Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves,” J. Appl. Phys. 111, 053105 (2012).
[CrossRef]

J. Phys. Chem. C (1)

S.-Y. Chen and A. A. Lazarides, “Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure,” J. Phys. Chem. C 113, 12167–12175 (2009).
[CrossRef]

Nano Lett. (12)

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011).
[CrossRef]

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
[CrossRef]

J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012).
[CrossRef]

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012).
[CrossRef]

R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010).
[CrossRef]

J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[CrossRef]

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012).
[CrossRef]

A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010).
[CrossRef]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009).
[CrossRef]

Nature (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012).
[CrossRef]

Nature Nanotechnol. (1)

B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnol. 7, 433–437 (2012).
[CrossRef]

New J. Phys. (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (2)

A. Eguiluz and J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14, 1347–1361 (1976).
[CrossRef]

A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013).
[CrossRef]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[CrossRef]

Science (2)

C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Other (1)

Comsol Multiphysics, http://www.comsol.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the structures simulated with the 2.5D modeling technique. All geometries are symmetric about the z axis.

Fig. 2.
Fig. 2.

Extinction efficiency spectra calculated for (a)–(c) a sphere dimer and (d)–(f) a cone dimer with the geometrical parameters shown in Figs. 1(a) and 1(b), for different values of the separation distance g. Simulations were performed taking into account nonlocal effects (solid red lines) and using the local-response approximation (dashed blue lines). The upper insets depict the incident wave polarization and direction with respect to the plasmonic dimers. The electric field norm distributions corresponding to the Ek plane (ϕ=0) for the different structures are shown in the bottom insets. The fields are calculated for a separation distance g=2nm, for both (c) sphere and (f) cone dimers, in correspondence with the fundamental resonant wavelengths, λ=410nm and λ=413nm, respectively. Parameter values used in the simulations were: ωp=1.36×1016s1, γ=3.20×1013s1, β=1.0×106m/s.

Fig. 3.
Fig. 3.

Field distribution properties of the disk dimer. (a) The electric field norm distribution at the surface of the particles. The close-up shows a cut of the structure along the Ek plane. It is possible to observe the smearing-out effect of the fields at the surface due to the nonlocal response. (b) and (c) The norm of the electric and magnetic fields, respectively, in the Ek plane in correspondence with λ=656nm, for a separation distance of g=2nm.

Fig. 4.
Fig. 4.

Extinction efficiency spectra calculated for the disk dimers shown in Fig. 1(c) for different values of the separation distance g, taking into account nonlocal effects (solid red lines) and using the local approximation response (dashed blue lines). The insets show a close-up of the resonance peaks.

Fig. 5.
Fig. 5.

Extinction efficiency spectra for the nanocrescent of Fig. 1(d). (a) The incident field is a plane wave propagating perpendicular to the axis of symmetry, with the electric field polarized parallel to it as shown in the inset; (b) the incident field propagates along the axis and is polarized perpendicularly. The insets show the distribution of the electric field component normal to the surface for (a) λ=693nm and (b) λ=790nm, as indicated by the arrows.

Tables (1)

Tables Icon

Table 1. Summary of Field Enhancing Properties for the Three Different Dimersa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P(r)=ε0χ(rr)E(r)dV.
(m)×(m)×E(m)ω2c2E(m)=ω2μ0P(m),
β2(m)((m)·P(m))+(ω2+iγω)P(m)=ε0ωp2E(m),
Eρ,ϕ,z(ρ,ϕ,z)=mEρ,ϕ,z(m)(ρ,z)eimϕ,Pρ,ϕ,z(ρ,ϕ,z)=mPρ,ϕ,z(m)(ρ,z)eimϕ.
Γav=Ω|E|/E0dSΩdS=1E0ζΩ|E|dS,
σext=1A4πk0Im{Efar},

Metrics