Abstract

A finite-difference time-domain scheme is proposed for the rigorous study of liquid-crystal photonic and plasmonic structures. The model takes into account the full-tensor liquid-crystal anisotropy as well as the permittivity dispersion of all materials involved. Isotropic materials are modeled via a generalized critical points model, while the dispersion of the liquid-crystal indices is described by Lorentzian terms. The validity of the proposed scheme is verified via a series of examples, ranging from transmission through liquid-crystal waveplates and cholesteric slabs to the plasmonic response of arrays of gold nanostripes with a liquid-crystal overlayer and the dispersive properties of metal–liquid-crystal–metal plasmonic waveguides. Results are directly compared with reference analytical or frequency-domain numerical solutions.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Propagation of TM modes in a nonlinear liquid-crystal waveguide

H. Lin and P. Palffy-Muhoray
Opt. Lett. 19(7) 436-438 (1994)

Diffractive properties of highly birefringent volume gratings: investigation

James J. Butler, Michelle S. Malcuit, and Miguel A. Rodriguez
J. Opt. Soc. Am. B 19(2) 183-189 (2002)

Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation

Chulwoo Oh and Michael J. Escuti
Opt. Express 14(24) 11870-11884 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription