Abstract

A finite-difference time-domain scheme is proposed for the rigorous study of liquid-crystal photonic and plasmonic structures. The model takes into account the full-tensor liquid-crystal anisotropy as well as the permittivity dispersion of all materials involved. Isotropic materials are modeled via a generalized critical points model, while the dispersion of the liquid-crystal indices is described by Lorentzian terms. The validity of the proposed scheme is verified via a series of examples, ranging from transmission through liquid-crystal waveplates and cholesteric slabs to the plasmonic response of arrays of gold nanostripes with a liquid-crystal overlayer and the dispersive properties of metal–liquid-crystal–metal plasmonic waveguides. Results are directly compared with reference analytical or frequency-domain numerical solutions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  2. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
    [CrossRef]
  3. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
    [CrossRef]
  4. I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophoton. 6, 061001 (2012).
    [CrossRef]
  5. P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
    [CrossRef]
  6. Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
    [CrossRef]
  7. Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
    [CrossRef]
  8. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
    [CrossRef]
  9. L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
    [CrossRef]
  10. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
    [CrossRef]
  11. A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
    [CrossRef]
  12. A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102 (2011).
    [CrossRef]
  13. D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics 8, 599–604 (2013).
    [CrossRef]
  14. D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
    [CrossRef]
  15. D. C. Zografopoulos and R. Beccherelli, “Design of a vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
    [CrossRef]
  16. D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express 21, 8240–8250 (2013).
    [CrossRef]
  17. J. Beeckman, R. James, F. A. Fernández, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” J. Lightwave Technol. 27, 3812–3819 (2009).
    [CrossRef]
  18. E. E. Kriezis and S. J. Elston, “Wide angle beam propagation method for liquid crystal device calculations,” Appl. Opt. 39, 5707–5714 (2000).
    [CrossRef]
  19. G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40, 733–748 (2008).
    [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  21. F. Teixeira, “Time-domain finite-difference and finite-element methods for maxwell equations in complex media,” IEEE Trans. Antennas Propag. 56, 2150–2166 (2008).
    [CrossRef]
  22. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
    [CrossRef]
  23. A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A 9, 745–748 (2007).
    [CrossRef]
  24. A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011).
    [CrossRef]
  25. K. P. Prokopidis and D. C. Zografopoulos, “Efficient FDTD algorithms for dispersive Drude-critical points media based on the bilinear z-transform,” Electron. Lett. 49, 534–536 (2013).
    [CrossRef]
  26. K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol. 31, 2467–2476 (2013).
    [CrossRef]
  27. E. E. Kriezis and S. J. Elston, “Finite-difference time-domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).
    [CrossRef]
  28. E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).
    [CrossRef]
  29. M. Dridi and A. Vial, “Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance,” Opt. Lett. 34, 2652–2654 (2009).
    [CrossRef]
  30. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 51–61 (2005).
    [CrossRef]
  31. L. Yang, “3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method,” Int. J. Infrared Millim. Waves 28, 557–565 (2007).
    [CrossRef]
  32. H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
    [CrossRef]
  33. S. Huang and F. Li, “FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms,” Int. J. Infrared Millim. Waves 25, 815–825 (2004).
    [CrossRef]
  34. V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011).
    [CrossRef]
  35. A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013).
    [CrossRef]
  36. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
    [CrossRef]
  37. S. Stallinga, “Berreman 4×4 matrix method for reflective liquid crystal displays,” J. Appl. Phys. 85, 3023–3031 (1999).
    [CrossRef]
  38. COMSOL Multiphysics v4.3a.
  39. A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152–7158 (2007).
    [CrossRef]
  40. J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001).
    [CrossRef]
  41. G. R. Werner and J. R. Cary, “A stable FDTD algorithm for non-diagonal, anisotropic dielectrics,” J. Comput. Phys. 226, 1085–1101 (2007).
    [CrossRef]
  42. I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
  43. D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006).
    [CrossRef]
  44. A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282, 903–907 (2009).
    [CrossRef]
  45. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  46. D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
    [CrossRef]

2013

D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics 8, 599–604 (2013).
[CrossRef]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express 21, 8240–8250 (2013).
[CrossRef]

K. P. Prokopidis and D. C. Zografopoulos, “Efficient FDTD algorithms for dispersive Drude-critical points media based on the bilinear z-transform,” Electron. Lett. 49, 534–536 (2013).
[CrossRef]

K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol. 31, 2467–2476 (2013).
[CrossRef]

A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

2012

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophoton. 6, 061001 (2012).
[CrossRef]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

2011

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102 (2011).
[CrossRef]

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011).
[CrossRef]

V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011).
[CrossRef]

2010

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

2009

2008

G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40, 733–748 (2008).
[CrossRef]

F. Teixeira, “Time-domain finite-difference and finite-element methods for maxwell equations in complex media,” IEEE Trans. Antennas Propag. 56, 2150–2166 (2008).
[CrossRef]

2007

A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A 9, 745–748 (2007).
[CrossRef]

G. R. Werner and J. R. Cary, “A stable FDTD algorithm for non-diagonal, anisotropic dielectrics,” J. Comput. Phys. 226, 1085–1101 (2007).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152–7158 (2007).
[CrossRef]

L. Yang, “3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method,” Int. J. Infrared Millim. Waves 28, 557–565 (2007).
[CrossRef]

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

2006

D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

2005

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 51–61 (2005).
[CrossRef]

2004

S. Huang and F. Li, “FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms,” Int. J. Infrared Millim. Waves 25, 815–825 (2004).
[CrossRef]

2001

J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001).
[CrossRef]

2000

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Wide angle beam propagation method for liquid crystal device calculations,” Appl. Opt. 39, 5707–5714 (2000).
[CrossRef]

1999

E. E. Kriezis and S. J. Elston, “Finite-difference time-domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).
[CrossRef]

S. Stallinga, “Berreman 4×4 matrix method for reflective liquid crystal displays,” J. Appl. Phys. 85, 3023–3031 (1999).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophoton. 6, 061001 (2012).
[CrossRef]

Al-Jabr, A. A.

A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013).
[CrossRef]

Alsing, P. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Alsunaidi, M. A.

A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013).
[CrossRef]

Altug, H.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

Asquini, R.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Beccherelli, R.

D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics 8, 599–604 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express 21, 8240–8250 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

Beeckman, J.

Binet, C.

D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006).
[CrossRef]

Bürgi, T.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

Caputo, R.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

Cardimon, D. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Cary, J. R.

G. R. Werner and J. R. Cary, “A stable FDTD algorithm for non-diagonal, anisotropic dielectrics,” J. Comput. Phys. 226, 1085–1101 (2007).
[CrossRef]

Çetin, A. E.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

Cloutier, S. G.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Cunningham, A.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

d’Alessandro, A.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

Danner, A. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

De Cort, W.

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

De Sio, L.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

Dehmollaian, M.

V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Dridi, M.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011).
[CrossRef]

M. Dridi and A. Vial, “Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance,” Opt. Lett. 34, 2652–2654 (2009).
[CrossRef]

Elston, S. J.

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Wide angle beam propagation method for liquid crystal device calculations,” Appl. Opt. 39, 5707–5714 (2000).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Finite-difference time-domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).
[CrossRef]

Erramilli, S.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Fernández, F. A.

Gauza, S.

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Hao, Q.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Huang, D.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Huang, S.

S. Huang and F. Li, “FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms,” Int. J. Infrared Millim. Waves 25, 815–825 (2004).
[CrossRef]

Huang, T. J.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

James, R.

Juluri, B. K.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Khee, T.

A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013).
[CrossRef]

Khoo, I. C.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Khoo, I.-C.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).

Kiraly, B.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Kossyrev, P. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Kriezis, E. E.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102 (2011).
[CrossRef]

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282, 903–907 (2009).
[CrossRef]

G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40, 733–748 (2008).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Wide angle beam propagation method for liquid crystal device calculations,” Appl. Opt. 39, 5707–5714 (2000).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Finite-difference time-domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).
[CrossRef]

Lapsley, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Laroche, T.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152–7158 (2007).
[CrossRef]

Le Cunff, L.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Leong, E. S. P.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

Li, F.

S. Huang and F. Li, “FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms,” Int. J. Infrared Millim. Waves 25, 815–825 (2004).
[CrossRef]

Li, J.

Liou, J.

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Liu, Y. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Lu, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Lu, R.

Ma, Y.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Mertiri, A.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Mitov, M.

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282, 903–907 (2009).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006).
[CrossRef]

Mosallaei, H.

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

Müstecaploglu, Ö. E.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

Nayyeri, V.

V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011).
[CrossRef]

Neyts, K.

Ooi, B. S.

A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013).
[CrossRef]

Pereda, J.

J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Prieto, A.

J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001).
[CrossRef]

Prokopidis, K. P.

K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol. 31, 2467–2476 (2013).
[CrossRef]

K. P. Prokopidis and D. C. Zografopoulos, “Efficient FDTD algorithms for dispersive Drude-critical points media based on the bilinear z-transform,” Electron. Lett. 49, 534–536 (2013).
[CrossRef]

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

Rashed-Mohassel, J.

V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011).
[CrossRef]

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Si, G. Y.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

Smalley, J. S. T.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Soleimani, M.

V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011).
[CrossRef]

Stallinga, S.

S. Stallinga, “Berreman 4×4 matrix method for reflective liquid crystal displays,” J. Appl. Phys. 85, 3023–3031 (1999).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tasolamprou, A. C.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102 (2011).
[CrossRef]

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282, 903–907 (2009).
[CrossRef]

Teixeira, F.

F. Teixeira, “Time-domain finite-difference and finite-element methods for maxwell equations in complex media,” IEEE Trans. Antennas Propag. 56, 2150–2166 (2008).
[CrossRef]

Teng, J. H.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

Tone, C. M.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

Umeton, C.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

Vanbrabant, P. J. M.

Vegas, A.

J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001).
[CrossRef]

Verrina, V.

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

Vial, A.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011).
[CrossRef]

M. Dridi and A. Vial, “Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance,” Opt. Lett. 34, 2652–2654 (2009).
[CrossRef]

A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A 9, 745–748 (2007).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152–7158 (2007).
[CrossRef]

Vielva, L.

J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001).
[CrossRef]

Wen, C.-H.

Werner, G. R.

G. R. Werner and J. R. Cary, “A stable FDTD algorithm for non-diagonal, anisotropic dielectrics,” J. Comput. Phys. 226, 1085–1101 (2007).
[CrossRef]

Wu, S.-T.

Xiang, N.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

Xu, J. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Yang, L.

L. Yang, “3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method,” Int. J. Infrared Millim. Waves 28, 557–565 (2007).
[CrossRef]

Yanik, A. A.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

Yin, A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Zhang, B.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Zhao, Y.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Ziogos, G. D.

G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40, 733–748 (2008).
[CrossRef]

Zografopoulos, D. C.

D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express 21, 8240–8250 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

K. P. Prokopidis and D. C. Zografopoulos, “Efficient FDTD algorithms for dispersive Drude-critical points media based on the bilinear z-transform,” Electron. Lett. 49, 534–536 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics 8, 599–604 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol. 31, 2467–2476 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102 (2011).
[CrossRef]

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282, 903–907 (2009).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006).
[CrossRef]

Adv. Mater.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. A

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011).
[CrossRef]

Appl. Phys. Lett.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

Electron. Lett.

K. P. Prokopidis and D. C. Zografopoulos, “Efficient FDTD algorithms for dispersive Drude-critical points media based on the bilinear z-transform,” Electron. Lett. 49, 534–536 (2013).
[CrossRef]

IEEE Trans. Antennas Propag.

V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011).
[CrossRef]

A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013).
[CrossRef]

F. Teixeira, “Time-domain finite-difference and finite-element methods for maxwell equations in complex media,” IEEE Trans. Antennas Propag. 56, 2150–2166 (2008).
[CrossRef]

IEEE Trans. Electromagn. Compat.

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001).
[CrossRef]

Int. J. Infrared Millim. Waves

S. Huang and F. Li, “FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms,” Int. J. Infrared Millim. Waves 25, 815–825 (2004).
[CrossRef]

L. Yang, “3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method,” Int. J. Infrared Millim. Waves 28, 557–565 (2007).
[CrossRef]

J. Appl. Phys.

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102 (2011).
[CrossRef]

Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

S. Stallinga, “Berreman 4×4 matrix method for reflective liquid crystal displays,” J. Appl. Phys. 85, 3023–3031 (1999).
[CrossRef]

J. Chem. Phys.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

J. Comput. Phys.

G. R. Werner and J. R. Cary, “A stable FDTD algorithm for non-diagonal, anisotropic dielectrics,” J. Comput. Phys. 226, 1085–1101 (2007).
[CrossRef]

J. Display Technol.

J. Lightwave Technol.

J. Nanophoton.

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophoton. 6, 061001 (2012).
[CrossRef]

J. Opt.

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

J. Opt. A

A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A 9, 745–748 (2007).
[CrossRef]

J. Phys. D

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152–7158 (2007).
[CrossRef]

Lab Chip

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

Microw. Opt. Technol. Lett.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Nano Lett.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005).
[CrossRef]

Nanoscale

L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012).
[CrossRef]

Opt. Commun.

A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282, 903–907 (2009).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Finite-difference time-domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).
[CrossRef]

Opt. Eng.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40, 733–748 (2008).
[CrossRef]

Photon. Nanostr. Fundam. Appl.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

Phys. Rev. B

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006).
[CrossRef]

Plasmonics

D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics 8, 599–604 (2013).
[CrossRef]

Other

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).

COMSOL Multiphysics v4.3a.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Definition of the FDTD cell employed in the proposed ADE-FDTD implementation and (b) schematic layout of the nematic molecular director, which is locally described by the tilt (θ) and twist (φ) angles.

Fig. 2.
Fig. 2.

Sellmeier fitting of the refractive index dispersion for the nematic material E7 in the 400–1000 nm window. The inset shows the difference nSellnCau, with reference to the Cauchy model of [30].

Fig. 3.
Fig. 3.

(a) Transmission of a LC slab placed between cross polarizers calculated by the proposed FDTD method, with and without taking into account the dispersion of the LC indices. Results are compared with the analytic solution. (b) Absolute errors for the two cases examined. Inset shows the schematic layout of the structure.

Fig. 4.
Fig. 4.

Transmission through a CLC slab for circularly polarized incident light of the same handedness as the LC helix. Results are compared with those calculated with the 4×4 Berreman matrix method [37]. The proposed FDTD method (circles) accurately reproduces the results obtained for the LC dispersive case (solid line). The nondispersive case (dashed line) is included for comparison. Inset shows the layout of the structure.

Fig. 5.
Fig. 5.

(a) Schematic layout of the investigated LC-plasmonic structure and (b) FDTD computational domain (unit cell geometry).

Fig. 6.
Fig. 6.

Transmission coefficient of the nanostripe array of Fig. 5 for θ=0° and for various sets of geometrical parameters w×t of the nanostripes. The proposed FDTD method accurately reproduces results obtained by the FEM.

Fig. 7.
Fig. 7.

Transmission coefficient of the nanostripe array of Fig. 5 for w×t=80×20nm2 and for three values of the LC tilt angle θ, calculated by the proposed FDTD and the reference FEM.

Fig. 8.
Fig. 8.

Effective modal index of a 100 nm thick Ag-E7-Ag plasmonic waveguide for LC tilt angle θ=π/4, where the impact of LC material dispersion is also investigated. Results of the proposed FDTD scheme are compared with reference FEM solutions. Inset shows the layout of the MLCM waveguide.

Fig. 9.
Fig. 9.

Effective modal index of the MLCM waveguide studied in Fig. 8 for the dispersive-LC case and for three tilt angle values, θ=0, π/4, and π/2.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=ε+ωD2ω(jγω)+p=1NApΩp(ejϕpΩp+ωjΓp+ejϕpΩpω+jΓp),
ε(ω)=ε+p=1Ma1pjω+a0pb2p(jω)2+b1pjω+b0p,
a0p=2ε0ApΩp(ΩpcosϕpΓpsinϕp),a1p=2ε0ApΩpsinϕp,b0p=Ωp2+Γp2,b1p=2Γp,b2p=1.
D(ω)=ε0ε(ω)E(ω)=ε0εE(ω)+P(ω).
P(ω)=ε0χ(ω)E(ω)=p=1MPp(ω),
Pp(ω)=a1pjω+a0pb2p(jω)2+b1pjω+b0pE(ω).
b2pP¨p(t)+b1pP˙p(t)+b0pPp(t)=a1pE˙(t)+a0pE(t),
(b2pδt2Δt2+b1pμtδtΔt+b0pμt2)Ppn=(a1pμtδtΔt+a0pμt2)En,
δtFn=Fn+1/2Fn1/2,
μtFn=12(Fn+1/2+Fn1/2),
δt2Fnδt(δtFn)=Fn+12Fn+Fn1,
μtδtFnμt(δtFn)=12(Fn+1Fn1),
μt2Fnμt(μtFn)=14(Fn+1+2Fn+Fn1).
Ppn+1=C1pPpn+C2pPpn1+C3pEn+1+C4pEn+C5pEn1,
C1p=(2b2,pΔt2b0,p2)/Cp,C2p=(b1,p2Δtb2,pΔt2b0,p4)/Cp,C3p=(a0,p4+a1,p2Δt)/Cp,C4p=a0,p2Cp,C5p=(a0,p4a1,p2Δt)/Cp,
Cp=b2,pΔt2+b1,p2Δt+b0,p4.
Dn+1=ε0εEn+1+Pn+1.
En+1=(Dn+1p=1N(C1pPpn+C2pPpn1)p=1N(C4pEn+C5pEn1))/(ε0ε+p=1NC3p).
ε˜=(εo+Δεcos2θcos2ϕΔεcos2θsinϕcosϕΔεsinθcosθcosϕΔεcos2θsinϕcosϕεo+Δεcos2θsin2ϕΔεsinθcosθsinϕΔεsinθcosθcosϕΔεsinθcosθsinϕεo+Δεsin2θ),
εxx(ω)=εo(ω)+Δε(ω)cos2ϕ,εyy(ω)=εo(ω)+Δε(ω)sin2ϕ,εzz(ω)=εo(ω),εxy(ω)=εyx(ω)=Δε(ω)sinϕcosϕ,εxz(ω)=εzx(ω)=0,εyz(ω)=εyz(ω)=0.
Dx=ε0[εo(ω)sin2ϕ+εe(ω)cos2ϕ]Ex+ε0[εe(ω)εo(ω)]sinϕcosϕEy,
Dy=ε0[εe(ω)εo(ω)]sinϕcosϕEx+ε0[εo(ω)cos2ϕ+εe(ω)sin2ϕ]Ey,
Dz=ε0εo(ω)Ez.
Px1=ε0εo(ω)sin2ϕEx,Px2=ε0εe(ω)cos2ϕEx,
Py1=12ε0εe(ω)sin(2ϕ)Ey,Py2=12ε0εo(ω)sin(2ϕ)Ey,
Qx1=12ε0εe(ω)sin(2ϕ)Ex,Qx2=12ε0εo(ω)sin(2ϕ)Ex,
Qy1=ε0εo(ω)cos2ϕEy,Qy2=ε0εe(ω)sin2ϕEy.
Dx=Px1+Px2+Py1+Py2,
Dy=Qx1+Qx2+Qy1+Qy2.
εo/e(ω)=ε,o/e+(εs,o/eε,o/e)ΩL,o/e2ΩL,o/e2+jωΓL,o/eω2.
(δt2Δt2+ΓL,oμtδtΔt+ΩL,o2μt2)Px1n=ε0sin2ϕ(ε,oΔt2δt2+ε,oΓL,oμtδtΔt+εs,oΩL,o2μt2)Exn,
Px1n+1=1co1(co4sin2ϕExn+1+co5sin2ϕExn+co6sin2ϕExn1co2Px1nco3Px1n1),
co1=ΩL,o4+ΓL,o2Δt+1Δt2,co2=ΩL,o22Δt2,co3=ΩL,o4ΓL,o2Δt+1Δt2,co4=ε0(εs,oΩL,o4+ε,oΓL,o2Δt+ε,oΔt2),co5=ε0(εs,oΩL,o22ε,oΔt2),co6=ε0(εs,oΩL,o4ε,oΓL,o2Δt+ε,oΔt2).
Dxn+1=ax1Exn+1+ax2Exn+ax3Exn1+ax4Px1n+ax5Px2n+ax6Px1n1+ax7Px2n1+ay1Eyn+1+ay2Eyn+ay3Eyn1+ay4Py1n+ay5Py2n+ay6Py1n1+ay7Py2n1.
ax1=co,4sin2ϕco,1+ce,4cos2ϕce,1,ax2=co,5sin2ϕco,1+ce,5cos2ϕce,1,ax3=co,6sin2ϕco,1+ce,6cos2ϕce,1,ax4=co,2co,1,ax5=ce,2ce,1,ax6=co,3co,1,ax7=ce,3ce,1.
Dyn+1=bx1Exn+1+bx2Exn+bx3Exn1+bx4Qx1n+bx5Qx2n+bx6Qx1n1+bx7Qx2n1+by1Eyn+1+by2Eyn+by3Eyn1+by4Qy1n+by5Qy2n+by6Qy1n1+by7Qy2n1.
Exn+1=Aby1Bay1ax1by1ay1bx1,
Eyn+1=Bax1Abx1ax1by1ay1bx1,
A=Dxn+1ax2Exnax3Exn1ax4Px1nax5Px2n1ax6Px1n1+ax7Px2n1+ay2Eynay3Eyn1ay4Py1nay5Py2nay6Py1n1ay7Py2n1
B=Dyn+1bx2Exnbx3Exn1bx4Qx1nbx5Qx2nbx6Qx1n1bx7Qx2n1by2Eynby3Eyn1by4Qy1nby5Qy2nby6Qy1n1by7Qy2n1.
no/e(λ)=Ao/e+Bo/eλ2+Co/eλ4,
εr,o/e(λ)=Co/e+Do/eλ2λ2Eo/e,
Iout=sin2(2ϕ)sin2[πdΔn(λ)λ],

Metrics