Abstract

We propose a scheme for the generation of hyperentangled multiqubit cluster states and Greenberger–Horne–Zeilinger states in both polarization and spatial mode degrees of freedom using the quantum-dot cavity system. This device can be used as the complete analyzer of hyperentangled multiphoton states. This proposed hyperentanglement generation and analyzer device can serve as a crucial component of high capacity, long-distance quantum communication. Using existing experimental data, it is demonstrated that the present scheme may be feasible in strong-coupling regimes with current techniques.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
    [CrossRef]
  2. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
    [CrossRef]
  3. C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  4. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
    [CrossRef]
  5. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef]
  6. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
    [CrossRef]
  7. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [CrossRef]
  8. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
    [CrossRef]
  9. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
    [CrossRef]
  10. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [CrossRef]
  11. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
    [CrossRef]
  12. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “On Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
    [CrossRef]
  13. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [CrossRef]
  14. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
    [CrossRef]
  15. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
    [CrossRef]
  16. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [CrossRef]
  17. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
    [CrossRef]
  18. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
    [CrossRef]
  19. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
    [CrossRef]
  20. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
    [CrossRef]
  21. K. Nemoto and W. J. Munro, “A near deterministic linear optical CNOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [CrossRef]
  22. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
    [CrossRef]
  23. D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990).
    [CrossRef]
  24. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
    [CrossRef]
  25. D. Schlingemann and R. Werner, “Quantum error-correcting codes associated with graphs,” Phys. Rev. A 65, 012308 (2001).
    [CrossRef]
  26. M. Varnava, D. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
    [CrossRef]
  27. E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
    [CrossRef]
  28. Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).
  29. S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998).
    [CrossRef]
  30. M. M. Wilde and D. B. Uskov, “Linear-optical hyperentanglement-assisted quantum error-correcting code,” Phys. Rev. A 79, 022305 (2009).
    [CrossRef]
  31. D. Bruss and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).
    [CrossRef]
  32. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
    [CrossRef]
  33. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
    [CrossRef]
  34. W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
    [CrossRef]
  35. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
    [CrossRef]
  36. C. Y. Lu, T. Yang, and J. W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
    [CrossRef]
  37. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
    [CrossRef]
  38. Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012).
    [CrossRef]
  39. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006).
    [CrossRef]
  40. J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010).
    [CrossRef]
  41. T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
    [CrossRef]
  42. V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
    [CrossRef]
  43. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
    [CrossRef]
  44. G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
    [CrossRef]
  45. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [CrossRef]
  46. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [CrossRef]
  47. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [CrossRef]
  48. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
    [CrossRef]
  49. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
    [CrossRef]
  50. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
    [CrossRef]
  51. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
    [CrossRef]
  52. A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
    [CrossRef]
  53. R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
    [CrossRef]
  54. H.-R. Wei and F.-G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
    [CrossRef]
  55. D. Solenov, S. E. Economou, and T. L. Reinecke, “Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity,” Phys. Rev. B 87, 035308 (2013).
    [CrossRef]
  56. F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
    [CrossRef]
  57. A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
    [CrossRef]
  58. V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
    [CrossRef]
  59. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
    [CrossRef]
  60. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
    [CrossRef]
  61. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
    [CrossRef]
  62. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef]
  63. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
    [CrossRef]
  64. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
    [CrossRef]

2013

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
[CrossRef]

H.-R. Wei and F.-G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[CrossRef]

D. Solenov, S. E. Economou, and T. L. Reinecke, “Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity,” Phys. Rev. B 87, 035308 (2013).
[CrossRef]

F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
[CrossRef]

2012

Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[CrossRef]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

2011

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

2010

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010).
[CrossRef]

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

2009

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Lu, T. Yang, and J. W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

M. M. Wilde and D. B. Uskov, “Linear-optical hyperentanglement-assisted quantum error-correcting code,” Phys. Rev. A 79, 022305 (2009).
[CrossRef]

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

2008

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

2007

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

2006

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

M. Varnava, D. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[CrossRef]

J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006).
[CrossRef]

2005

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
[CrossRef]

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

2004

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

K. Nemoto and W. J. Munro, “A near deterministic linear optical CNOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

2003

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

2002

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

D. Bruss and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).
[CrossRef]

2001

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[CrossRef]

D. Schlingemann and R. Werner, “Quantum error-correcting codes associated with graphs,” Phys. Rev. A 65, 012308 (2001).
[CrossRef]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

2000

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

1999

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “On Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[CrossRef]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

1998

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998).
[CrossRef]

1993

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[CrossRef]

1992

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

1990

D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990).
[CrossRef]

Abstreiter, G.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Aichele, T.

V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
[CrossRef]

Atkinson, P.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

Aufféves-Garnier, A.

A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Barbieri, M.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Barthelemy, P.

F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
[CrossRef]

Bennett, A. J.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Benson, O.

V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
[CrossRef]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Bichler, M.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Birkedal, D.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

Bonato, C.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

Borri, P.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Bose, S.

S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998).
[CrossRef]

Bouwmeester, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

Braakman, F. R.

F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
[CrossRef]

Brassard, C.

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[CrossRef]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Browne, D.

M. Varnava, D. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[CrossRef]

Brunner, D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Bruss, D.

D. Bruss and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).
[CrossRef]

Bulaev, D. V.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Calarco, T.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Calsamiglia, J.

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “On Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Ceccarelli, R.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

Cha, S. K.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Chen, G.

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

Chen, Q.-Q.

Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012).
[CrossRef]

Chen, Y.-A.

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Cinelli, C.

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Cirac, J. I.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Cooper, K.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

Crépeau, G.

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Dalgarno, P. A.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Datta, A.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

De Martini, F.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Deng, F. G.

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Deng, F.-G.

Devitt, S. J.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[CrossRef]

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

Ding, D. P.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Economou, S. E.

D. Solenov, S. E. Economou, and T. L. Reinecke, “Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity,” Phys. Rev. B 87, 035308 (2013).
[CrossRef]

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[CrossRef]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[CrossRef]

Evans, Z. W. E.

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

Fedichev, P.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Finley, J. J.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Fowler, A. G.

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010).
[CrossRef]

Gérard, J. M.

A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Gerardot, B. D.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Greenberger, D.

D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990).
[CrossRef]

Greentree, A. D.

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

Gudat, J.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

Guo, G. C.

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

Harrison, K. A.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[CrossRef]

Hatami, F.

V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
[CrossRef]

Haupt, F.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

He, L. X.

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

Heiss, D.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Hollenberg, L. C. L.

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

Horne, M.

D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990).
[CrossRef]

Horne, M. A.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[CrossRef]

Hu, C. Y.

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Hua, M.

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef]

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

Huebl, H.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Huelga, S. F.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[CrossRef]

Hvam, J. M.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

Hwang, M. R.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Imoto, N.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Jung, E.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

JuYou, H.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Karlsson, A.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Karrai, K.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Kim, H.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Kim, M. S.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Knight, P. L.

S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998).
[CrossRef]

Koashi, M.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

Krebs, O.

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Kroner, M.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Lanco, L.

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Langbein, W.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Lemaitre, A.

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Leosson, K.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

Li, C. F.

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

Li, C. Y.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Li, F.

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Li, T.

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef]

Li, X. H.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Long, G. L.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Loo, V.

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Loss, D.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Lu, C. Y.

C. Y. Lu, T. Yang, and J. W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

Lu, C.-Y.

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Lu, Y.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

Lütkenhaus, N.

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “On Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Macchiavello, C.

D. Bruss and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).
[CrossRef]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[CrossRef]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

Masselink, W. T.

V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
[CrossRef]

Mataloni, P.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Monken, C. H.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Munro, W. J.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

K. Nemoto and W. J. Munro, “A near deterministic linear optical CNOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

Nemoto, K.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[CrossRef]

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

K. Nemoto and W. J. Munro, “A near deterministic linear optical CNOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

Nicoll, C. A.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Oemrawsingh, S. S. R.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

Öhberg, P.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Pádua, S.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Pan, J. W.

C. Y. Lu, T. Yang, and J. W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Pan, J.-W.

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Park, D.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Patel, R. B.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

Pazy, E.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Peng, C.-Z.

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Peres, A.

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Petroff, P. M.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Poizat, J. P.

A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Rarity, J. G.

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[CrossRef]

Reichl, C.

F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
[CrossRef]

Reinecke, T. L.

D. Solenov, S. E. Economou, and T. L. Reinecke, “Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity,” Phys. Rev. B 87, 035308 (2013).
[CrossRef]

Ren, B. C.

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef]

Reuter, D.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

Ritchie, D. A.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

Rudolph, T.

M. Varnava, D. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[CrossRef]

Sagnes, I.

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Santori, C.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Schaeck, S.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

Schlingemann, D.

D. Schlingemann and R. Werner, “Quantum error-correcting codes associated with graphs,” Phys. Rev. A 65, 012308 (2001).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

Seidl, S.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Senellart, P.

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Shapiro, J. H.

J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006).
[CrossRef]

Sheng, Y. B.

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

Shields, A. J.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

Shimony, A.

D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990).
[CrossRef]

Simon, C.

A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Solenov, D.

D. Solenov, S. E. Economou, and T. L. Reinecke, “Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity,” Phys. Rev. B 87, 035308 (2013).
[CrossRef]

Son, J. W.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Song, H.-S.

Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012).
[CrossRef]

Song, J.

Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012).
[CrossRef]

Song, S. Y.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

Stavarache, V.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

Stephens, A. M.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[CrossRef]

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

Stoltz, N. G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Suominen, K. A.

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “On Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Tamaryan, S.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Tong, D. M.

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Uskov, D. B.

M. M. Wilde and D. B. Uskov, “Linear-optical hyperentanglement-assisted quantum error-correcting code,” Phys. Rev. A 79, 022305 (2009).
[CrossRef]

Vaidman, L.

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

Vallone, G.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

van Exter, M. P.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

Vandersypen, L. M. K.

F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
[CrossRef]

Varnava, M.

M. Varnava, D. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[CrossRef]

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

Vedral, V.

S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998).
[CrossRef]

Voisin, P.

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Walborn, S. P.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Wang, C.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Wang, T. J.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

Warburton, R. J.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Wegscheider, W.

F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
[CrossRef]

Wei, H. R.

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
[CrossRef]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012).
[CrossRef]

Wei, H.-R.

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

Weinfurter, H.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

Werner, R.

D. Schlingemann and R. Werner, “Quantum error-correcting codes associated with graphs,” Phys. Rev. A 65, 012308 (2001).
[CrossRef]

Wieck, A. D.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Wilde, M. M.

M. M. Wilde and D. B. Uskov, “Linear-optical hyperentanglement-assisted quantum error-correcting code,” Phys. Rev. A 79, 022305 (2009).
[CrossRef]

Woggon, U.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wüst, G.

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

Xia, Y.

Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012).
[CrossRef]

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Yamamoto, Y.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Yang, T.

C. Y. Lu, T. Yang, and J. W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Yin, Z. Q.

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

Yoo, S. K.

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Yoran, N.

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[CrossRef]

D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990).
[CrossRef]

Zhang, A.-N.

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Zhao, Z.

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Zhou, H. Y.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Zhou, P.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Zhou, X.-Q.

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

Zoller, P.

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Zou, Y.

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

Zukowski, M.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[CrossRef]

Zwiller, V.

V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
[CrossRef]

Am. J. Phys.

D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990).
[CrossRef]

Appl. Phys. Lett.

V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005).
[CrossRef]

V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010).
[CrossRef]

Eur. Phys. J. D

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013).
[CrossRef]

Europhys. Lett.

G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010).
[CrossRef]

J. Opt. Soc. Am.

Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012).
[CrossRef]

Nanotechnology

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010).
[CrossRef]

Nat. Nanotechnol.

F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013).
[CrossRef]

Nat. Photonics

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[CrossRef]

Nature

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef]

B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008).
[CrossRef]

Opt. Express

Phys. Rev. A

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[CrossRef]

A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008).
[CrossRef]

A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[CrossRef]

J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006).
[CrossRef]

J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010).
[CrossRef]

T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “On Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).

S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998).
[CrossRef]

M. M. Wilde and D. B. Uskov, “Linear-optical hyperentanglement-assisted quantum error-correcting code,” Phys. Rev. A 79, 022305 (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

D. Schlingemann and R. Werner, “Quantum error-correcting codes associated with graphs,” Phys. Rev. A 65, 012308 (2001).
[CrossRef]

Phys. Rev. B

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004).
[CrossRef]

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

D. Solenov, S. E. Economou, and T. L. Reinecke, “Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity,” Phys. Rev. B 87, 035308 (2013).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Phys. Rev. Lett.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

M. Varnava, D. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[CrossRef]

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[CrossRef]

K. Nemoto and W. J. Munro, “A near deterministic linear optical CNOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

D. Bruss and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002).
[CrossRef]

C. Y. Lu, T. Yang, and J. W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

Science

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme for an entangling gate in which the target qubit is the incoming photon spin in spatial-mode DOFs or in polarization. The c-PBS is a polarizing BS in the circular basis that transmits the input right-circularly polarized photon | R and reflects the left-circularly polarized photon | L . The QWPs are used to complete the Hadamard transformations | R ( 1 / 2 ) ( | R + | L ) and | L ( 1 / 2 ) ( | R | L ) in the polarization DOF on the photons. The 50 50 BS, which works as the Hadamard gate on the spatial-mode states of a single photon, and the phase shifter PS ¯ in the path a 2 that will add a π phase on the polarization state | R .

Fig. 2.
Fig. 2.

Setup for the complete n -photon HCSA in polarization and spatial-mode DOFs. The QWPs are used to complete the Hadamard transformations | R ( 1 / 2 ) ( | R + | L ) and | L ( 1 / 2 ) ( | R | L ) in the polarization DOF on the photons. The 50 50 BS, which works as the Hadamard gate on the spatial-mode states of a single photon, and the phase shifters PS, PS ¯ , P π in the path a 2 are used to add a π phase on the | L state, | R states, and all polarization states of the photon, respectively. The c-PBS is a polarizing BS in the circular basis that transmits the input right-circularly polarized photon | R and reflects the left-circularly polarized photon | L .

Fig. 3.
Fig. 3.

Fidelity F in each DOF and the κ s / κ required in the present scheme via the coupling strength g / ( κ + κ s ) in the case of | t 0 | = | r h | .

Tables (1)

Tables Icon

Table 1. Relationship between the Measurement Outcomes of the Photon-Spin System and the Initial Phase Information of the Hyperentangled States

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

| GHZ N = 1 2 i = 2 N U 1 , i cnot ( | 0 + | 1 ) 1 | 00 0 N 1 , | ϕ N = 1 2 i = N 2 ( H ˜ 1 U 1 , i cnot ) ( | 0 + | 1 ) 1 | 00 0 N 1 .
d a ^ d t = [ i ( ω c ω ) + κ + κ s 2 ] a ^ g σ κ a ^ in κ a ^ in + H ^ , d σ d t = [ i ( ω X ω ) + γ 2 ] σ g σ z a ^ + G ^ , a ^ r = a ^ in + κ a ^ , a ^ t = a ^ in + κ a ^ ,
t h ( ω ) = κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 , r h ( ω ) = [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ s 2 ] + g 2 [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 , r 0 ( ω ) = 1 + t 0 ( ω ) , t 0 ( ω ) = κ i ( ω 0 ω ) + κ + κ s 2 .
| R , | L , , | L , | L , , | R , | R , , | L , | R , , | R , | R , , | L , | R , , | R , | L , , | L , | L , .
| ϕ 1 p 1 = 1 2 [ | A ( | R | L ) p 1 | A ( | R + | L ) p 1 ] | a 1 p 1 .
1 2 { | B [ | A ( | a 1 + | a 2 ) | A ( | a 2 | a 1 ) ] | R + | B [ | A ( | a 1 + | a 2 ) + | A ( | a 2 | a 1 ) ] | L } .
1 2 { | B | R + | B | L ) ( | A | a 1 + | A | a 2 ) .
1 2 ( N + 2 ) ( | + σ n , S z | ) s i = n 1 ( | a 1 + σ i 1 , S z | a 2 ) i ( | + σ n , P z | ) j = n 1 ( | R + σ j 1 , P z | L ) j .
| φ 123 P S = | Ψ P | Φ S ,
| Ψ ± ± ± P = 1 2 2 ( | R p 1 ± σ p 2 , P z | L p 1 ) ( | R p 2 ± σ p 3 , P z | L p 2 ) ( | R p 3 ± | L p 3 ) .
| Φ ± ± ± S = 1 2 2 ( | a 1 p 1 ± σ p 2 , S z | a 1 p 1 ) ( | b 1 p 2 ± σ p 3 , S z | b 2 p 2 ) ( | c 1 p 3 ± | c 2 p 3 ) ,
[ | a 1 p 1 ( σ p 2 , S z | | ) A ( | b 1 p 2 + σ p 3 , S z | b 2 p 2 ) ( | c 1 p 3 + | c 2 p 3 ) + | a 2 p 1 ( | σ p 2 , S z | ) A ( | b 1 p 2 + σ p 3 , S z | b 2 p 2 ) ( | c 1 p 3 + | c 2 p 3 ) ] [ | R p 1 ( σ p 2 , P z | | ) B ( | R p 2 + σ p 3 , P z | L p 2 ) ( | R p 3 + | L p 3 ) + | L p 1 ( | σ p 2 , P z | ) B ( | R p 2 + σ p 3 , P z | L p 2 ) ( | R p 3 + | L p 3 ) ] .
| φ c = ( σ p 2 , S z | + | ) A ( | b 1 p 2 + σ p 3 , S z | b 2 p 2 ) ( | c 1 p 3 + | c 2 p 3 ) ( σ p 2 , P z | + | ) B ( | R p 2 + σ p 3 , P z | L p 2 ) ( | R p 3 | L p 3 )
| b 2 [ | ( | c 1 + | c 2 ) p 3 + | ( | c 1 | c 2 ) p 3 ) ] | R p 2 [ | ( | R + | L ) p 3 + | ( | R + | L ) p 3 ] .
| b 1 p 2 | c 1 p 3 | + A | R p 2 | R p 3 | + B .
| Ψ + + P | R p 2 | R p 3 | B , | Ψ + + P | L p 2 | R p 3 | + B , | Ψ + + P | R p 2 | L p 3 | + B , | Ψ P | L p 2 | L p 3 | B , | Ψ + P | L p 2 | R p 3 | B , | Ψ + P | R p 2 | L p 3 | B , | Ψ + P | L p 2 | L p 3 | + B ,
| Φ + + S | b 1 p 2 | c 1 p 3 | A , | Ψ + + S | b 2 p 2 | c 1 p 3 | + A , | Φ + + S | b 1 p 2 | c 2 p 3 | + A , | Ψ S | b 2 p 2 | c 2 p 3 | A , | Φ + S | b 2 p 2 | c 1 p 3 | A , | Ψ + S | b 1 p 2 | c 2 p 3 | A , | Φ + S | b 2 p 2 | c 2 p 3 | + A .
F = | t 0 | 6 / ( | r 0 | 2 + | t 0 | 2 ) 3 .
F = ( 1 + exp ( t / T e ) / 2 ,

Metrics