Abstract

Large-area subwavelength dielectric hexagonal lattices of cylindrical pillars on quartz substrates that provide high optical transmittance at all angles of incidence under different polarizations of light, and are fabricated using low-cost patterning techniques, are demonstrated and analyzed. Transmittance >85% for angles of incidence in excess of 70° is demonstrated at visible and near-infrared wavelengths, and the structures employed are shown to be superior at visible wavelengths to tapered “moth eye” surfaces for practically achievable dimensions. Detailed analytical calculations and numerical simulations elucidating the impact of feature size, height, periodicity, and refractive index are presented.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002).
    [CrossRef]
  2. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).
  3. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  4. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
    [CrossRef]
  5. R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.
  6. J.-Y. Cho, K.-J. Byeon, and H. Lee, “Forming the graded-refractive-index antireflection layers on light-emitting diodes to enhance the light extraction,” Opt. Lett. 36, 3203–3205 (2011).
    [CrossRef]
  7. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
    [CrossRef]
  8. P. Menna, G. Di Francia, and V. La Ferrara, “Porous silicon in solar cells: a review and a description of its application as an AR coating,” Solar Energy Mater. Solar Cells 37, 13–24 (1995).
    [CrossRef]
  9. W. Theiß, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
    [CrossRef]
  10. C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81, 2980–2982 (2002).
    [CrossRef]
  11. J. Y. Chen and K. W. Sun, “Nanostructured thin films for anti-reflection applications,” Thin Solid Films 519, 5194–5198 (2011).
    [CrossRef]
  12. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
    [CrossRef]
  13. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
    [CrossRef]
  14. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
    [CrossRef]
  15. N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express 19, A118–A125 (2011).
    [CrossRef]
  16. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
    [CrossRef]
  17. H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
    [CrossRef]
  18. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007).
    [CrossRef]
  19. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
    [CrossRef]
  20. J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A 219, 1–6 (2003).
    [CrossRef]
  21. C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
    [CrossRef]
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  23. Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39, L735–L737 (2000).
    [CrossRef]
  24. M. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
    [CrossRef]
  25. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [CrossRef]
  26. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef]
  27. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994).
    [CrossRef]
  28. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995).
    [CrossRef]
  29. L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

2012

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

2011

J. Y. Chen and K. W. Sun, “Nanostructured thin films for anti-reflection applications,” Thin Solid Films 519, 5194–5198 (2011).
[CrossRef]

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
[CrossRef]

N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express 19, A118–A125 (2011).
[CrossRef]

J.-Y. Cho, K.-J. Byeon, and H. Lee, “Forming the graded-refractive-index antireflection layers on light-emitting diodes to enhance the light extraction,” Opt. Lett. 36, 3203–3205 (2011).
[CrossRef]

2008

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
[CrossRef]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

2007

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

M. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
[CrossRef]

2003

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A 219, 1–6 (2003).
[CrossRef]

2002

C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81, 2980–2982 (2002).
[CrossRef]

J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002).
[CrossRef]

2001

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

2000

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39, L735–L737 (2000).
[CrossRef]

1997

W. Theiß, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

1995

P. Menna, G. Di Francia, and V. La Ferrara, “Porous silicon in solar cells: a review and a description of its application as an AR coating,” Solar Energy Mater. Solar Cells 37, 13–24 (1995).
[CrossRef]

E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995).
[CrossRef]

1994

1993

1991

1981

1973

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Acree, M.

Ajayan, P. M.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Barbastathis, G.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

Bayindir, M.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Bur, J. A.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Buyukserin, F.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Byeon, K.-J.

Chang, A. S. P.

Chang, C.-H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

Chang, H.-C.

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Nanostructured thin films for anti-reflection applications,” Thin Solid Films 519, 5194–5198 (2011).
[CrossRef]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chen, L.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

M. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
[CrossRef]

Chen, P.-Y.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
[CrossRef]

Cho, J.-Y.

Choi, H. J.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

Ci, L.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Cohen, R. E.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

Deniz, H.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Di Francia, G.

P. Menna, G. Di Francia, and V. La Ferrara, “Porous silicon in solar cells: a review and a description of its application as an AR coating,” Solar Energy Mater. Solar Cells 37, 13–24 (1995).
[CrossRef]

Dobrowolski, J. A.

Ebels, U.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A 219, 1–6 (2003).
[CrossRef]

Fauchet, P. M.

C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81, 2980–2982 (2002).
[CrossRef]

Gaylord, T. K.

Giersig, M.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A 219, 1–6 (2003).
[CrossRef]

Grann, E. B.

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39, L735–L737 (2000).
[CrossRef]

Harvey, J. L.

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Hayashi, K.

Ho, C.-C.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
[CrossRef]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Ijiro, T.

Jaehee, C.

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Juan, W.-T.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
[CrossRef]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39, L735–L737 (2000).
[CrossRef]

Khudiyev, T.

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Kikuta, H.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39, L735–L737 (2000).
[CrossRef]

Kim, J. K.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kim, Y. S.

Korevaar, B. A.

L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

Kuo, M.-L.

La Ferrara, V.

P. Menna, G. Di Francia, and V. La Ferrara, “Porous silicon in solar cells: a review and a description of its application as an AR coating,” Solar Energy Mater. Solar Cells 37, 13–24 (1995).
[CrossRef]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Lee, H.

Lee, W.-L.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
[CrossRef]

Lin, K.-H.

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
[CrossRef]

Lin, S.-Y.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
[CrossRef]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

M. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
[CrossRef]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Ma, P.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).

Masuda, H.

McKinley, G. H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

Menna, P.

P. Menna, G. Di Francia, and V. La Ferrara, “Porous silicon in solar cells: a review and a description of its application as an AR coating,” Solar Energy Mater. Solar Cells 37, 13–24 (1995).
[CrossRef]

Moharam, M. G.

Mont, F. W.

Morris, G. M.

Okamoto, E.

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Park, K.-C.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Pethuraja, G. G.

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Poitras, D.

Pommet, D. A.

Poxson, D. J.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
[CrossRef]

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Raguin, D. H.

Rybczynski, J.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A 219, 1–6 (2003).
[CrossRef]

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Schubert, E. F.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
[CrossRef]

M. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Sood, A. K.

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Sood, A. W.

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Southwell, W. H.

Striemer, C. C.

C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81, 2980–2982 (2002).
[CrossRef]

Sun, K. W.

J. Y. Chen and K. W. Sun, “Nanostructured thin films for anti-reflection applications,” Thin Solid Films 519, 5194–5198 (2011).
[CrossRef]

Tao, M.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

Theiß, W.

W. Theiß, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

Tolliver, T. R.

L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

Tsakalakos, L.

L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

Vakil, H.

Varga, M. G.

Welser, R. E.

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

M. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007).
[CrossRef]

Xi, Y. A.

L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

Xing, Y.

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

Yamada, N.

Yang, H.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

Yang, Z.-P.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Zhong, D.

L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

Zhou, W.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

ACS Appl. Mater. Interfaces

C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011).
[CrossRef]

ACS Nano

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81, 2980–2982 (2002).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011).
[CrossRef]

Colloids Surf. A

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A 219, 1–6 (2003).
[CrossRef]

J. Appl. Phys.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39, L735–L737 (2000).
[CrossRef]

Nano Lett.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Nat. Nanotechnol.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Nat. Photonics

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Nature

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Opt. Express

Opt. Lett.

Solar Energy Mater. Solar Cells

P. Menna, G. Di Francia, and V. La Ferrara, “Porous silicon in solar cells: a review and a description of its application as an AR coating,” Solar Energy Mater. Solar Cells 37, 13–24 (1995).
[CrossRef]

Surf. Sci. Rep.

W. Theiß, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997).
[CrossRef]

Thin Solid Films

J. Y. Chen and K. W. Sun, “Nanostructured thin films for anti-reflection applications,” Thin Solid Films 519, 5194–5198 (2011).
[CrossRef]

Other

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).

R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.

L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics