Abstract

The self-switching mechanism in a Sagnac interferometer is studied numerically. A new structure of a semiconductor-optical-amplifier (SOA)-based Sagnac interferometer self-switch (SISS) is presented. For analyzing the switching characteristics of the structure, an improved finite-difference beam propagation method is utilized to study counterpropagation pulses in the SOA. All intraband nonlinear gain compression effects in the SOA that have not been considered simultaneously in previous Sagnac switches are considered. The effects of structural and input pulse parameters on the SISS operation are analyzed. Simulation results determine the optimum condition for the maximum switching output power.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  2. S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
    [CrossRef]
  3. E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
    [CrossRef]
  4. J. Kurumida, H. Uenohara, K. Kobayashi, “All-optical label recognition for time-domain signal using multistage switching scheme based on SOA-MZIs time domain label separation by SOA-MZI self-switching scheme,” Electron. Lett. 42, 1362–1363 (2006).
    [CrossRef]
  5. E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
    [CrossRef]
  6. J. J. G. M. van der Tol, H. de Waardt, Y. Liu, “A Mach–Zehnder-interferometer-based low-loss combiner,” IEEE Photon. Technol. Lett. 13, 1197–1199 (2001).
    [CrossRef]
  7. H. J. S. Dorren, G. D. Khoe, D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
    [CrossRef]
  8. M. Razaghi, V. Ahmadi, M. J. Connelly, “Femtosecond pulse shaping using counter-propagating pulses in a semiconductor optical amplifier,” Opt. Quantum Electron. 41, 513–523 (2009).
    [CrossRef]
  9. T. Chattopadhyay, J. N. Roy, “Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical tri-state logic gates,” Optik 122, 1073–1078 (2011).
    [CrossRef]
  10. L. B. Soldano, E. C. Penmngs, “Optical multi-mode interference devices based on self-imaging principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  11. K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417–426 (1996).
    [CrossRef]
  12. M. Razaghi, V. Ahmadi, M. J. Connelly, “Comprehensive finite-difference time dependent beam propagation model of counter propagation picosecond pulses in a semiconductor optical amplifier,” J. Lightwave Technol. 27, 3162–3174 (2009).
    [CrossRef]
  13. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
    [CrossRef]
  14. A. Dienes, J. P. Heritage, C. Jasti, M. Y. Hong, “Femtosecond optical pulse amplification in saturated media,” J. Opt. Soc. Am. B 13, 725–734 (1996).
    [CrossRef]
  15. R. S. Grant, W. Sibbet, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
    [CrossRef]
  16. A. Mecozzi, J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
    [CrossRef]
  17. M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
    [CrossRef]
  18. Y. H. Kao, I. V. Goltser, M. Jiang, M. N. Islam, G. Raybon, “Gain dispersion induced subpicosecond pulse breakup in a fiber and semiconductor laser amplifier combined system,” Appl. Phys. Lett. 69, 4221–4223 (1996).
    [CrossRef]

2011

T. Chattopadhyay, J. N. Roy, “Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical tri-state logic gates,” Optik 122, 1073–1078 (2011).
[CrossRef]

2009

M. Razaghi, V. Ahmadi, M. J. Connelly, “Femtosecond pulse shaping using counter-propagating pulses in a semiconductor optical amplifier,” Opt. Quantum Electron. 41, 513–523 (2009).
[CrossRef]

M. Razaghi, V. Ahmadi, M. J. Connelly, “Comprehensive finite-difference time dependent beam propagation model of counter propagation picosecond pulses in a semiconductor optical amplifier,” J. Lightwave Technol. 27, 3162–3174 (2009).
[CrossRef]

2008

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

2006

J. Kurumida, H. Uenohara, K. Kobayashi, “All-optical label recognition for time-domain signal using multistage switching scheme based on SOA-MZIs time domain label separation by SOA-MZI self-switching scheme,” Electron. Lett. 42, 1362–1363 (2006).
[CrossRef]

2005

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

2002

H. J. S. Dorren, G. D. Khoe, D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

2001

J. J. G. M. van der Tol, H. de Waardt, Y. Liu, “A Mach–Zehnder-interferometer-based low-loss combiner,” IEEE Photon. Technol. Lett. 13, 1197–1199 (2001).
[CrossRef]

1999

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

1997

1996

1995

L. B. Soldano, E. C. Penmngs, “Optical multi-mode interference devices based on self-imaging principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1994

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
[CrossRef]

1991

R. S. Grant, W. Sibbet, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Ahmadi, V.

M. Razaghi, V. Ahmadi, M. J. Connelly, “Comprehensive finite-difference time dependent beam propagation model of counter propagation picosecond pulses in a semiconductor optical amplifier,” J. Lightwave Technol. 27, 3162–3174 (2009).
[CrossRef]

M. Razaghi, V. Ahmadi, M. J. Connelly, “Femtosecond pulse shaping using counter-propagating pulses in a semiconductor optical amplifier,” Opt. Quantum Electron. 41, 513–523 (2009).
[CrossRef]

Bente, E. A. J. M.

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

Binsma, J. J. M.

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

Borri, P.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Calabretta, N.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

Chang, T. G.

Chang, Y. H.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
[CrossRef]

Chattopadhyay, T.

T. Chattopadhyay, J. N. Roy, “Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical tri-state logic gates,” Optik 122, 1073–1078 (2011).
[CrossRef]

Ciaramella, E.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

Connelly, M. J.

M. Razaghi, V. Ahmadi, M. J. Connelly, “Femtosecond pulse shaping using counter-propagating pulses in a semiconductor optical amplifier,” Opt. Quantum Electron. 41, 513–523 (2009).
[CrossRef]

M. Razaghi, V. Ahmadi, M. J. Connelly, “Comprehensive finite-difference time dependent beam propagation model of counter propagation picosecond pulses in a semiconductor optical amplifier,” J. Lightwave Technol. 27, 3162–3174 (2009).
[CrossRef]

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).

Contestabile, G.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

de Waardt, H.

J. J. G. M. van der Tol, H. de Waardt, Y. Liu, “A Mach–Zehnder-interferometer-based low-loss combiner,” IEEE Photon. Technol. Lett. 13, 1197–1199 (2001).
[CrossRef]

Delfyett, P. J.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
[CrossRef]

Dienes, A.

A. Dienes, J. P. Heritage, C. Jasti, M. Y. Hong, “Femtosecond optical pulse amplification in saturated media,” J. Opt. Soc. Am. B 13, 725–734 (1996).
[CrossRef]

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
[CrossRef]

Dorren, H. J. S.

H. J. S. Dorren, G. D. Khoe, D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Gangopadhyay, R.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

Glesk, I.

Goltser, I. V.

Y. H. Kao, I. V. Goltser, M. Jiang, M. N. Islam, G. Raybon, “Gain dispersion induced subpicosecond pulse breakup in a fiber and semiconductor laser amplifier combined system,” Appl. Phys. Lett. 69, 4221–4223 (1996).
[CrossRef]

Grant, R. S.

R. S. Grant, W. Sibbet, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Gupta, S.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

Heritage, J. P.

A. Dienes, J. P. Heritage, C. Jasti, M. Y. Hong, “Femtosecond optical pulse amplification in saturated media,” J. Opt. Soc. Am. B 13, 725–734 (1996).
[CrossRef]

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
[CrossRef]

Hong, M. Y.

A. Dienes, J. P. Heritage, C. Jasti, M. Y. Hong, “Femtosecond optical pulse amplification in saturated media,” J. Opt. Soc. Am. B 13, 725–734 (1996).
[CrossRef]

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
[CrossRef]

Hvam, J. M.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Islam, M. N.

Y. H. Kao, I. V. Goltser, M. Jiang, M. N. Islam, G. Raybon, “Gain dispersion induced subpicosecond pulse breakup in a fiber and semiconductor laser amplifier combined system,” Appl. Phys. Lett. 69, 4221–4223 (1996).
[CrossRef]

Jasti, C.

Jiang, M.

Y. H. Kao, I. V. Goltser, M. Jiang, M. N. Islam, G. Raybon, “Gain dispersion induced subpicosecond pulse breakup in a fiber and semiconductor laser amplifier combined system,” Appl. Phys. Lett. 69, 4221–4223 (1996).
[CrossRef]

Kang, K. I.

Kao, Y. H.

Y. H. Kao, I. V. Goltser, M. Jiang, M. N. Islam, G. Raybon, “Gain dispersion induced subpicosecond pulse breakup in a fiber and semiconductor laser amplifier combined system,” Appl. Phys. Lett. 69, 4221–4223 (1996).
[CrossRef]

Khoe, G. D.

H. J. S. Dorren, G. D. Khoe, D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Kobayashi, K.

J. Kurumida, H. Uenohara, K. Kobayashi, “All-optical label recognition for time-domain signal using multistage switching scheme based on SOA-MZIs time domain label separation by SOA-MZI self-switching scheme,” Electron. Lett. 42, 1362–1363 (2006).
[CrossRef]

Kurumida, J.

J. Kurumida, H. Uenohara, K. Kobayashi, “All-optical label recognition for time-domain signal using multistage switching scheme based on SOA-MZIs time domain label separation by SOA-MZI self-switching scheme,” Electron. Lett. 42, 1362–1363 (2006).
[CrossRef]

Langbein, W.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Lenstra, D.

H. J. S. Dorren, G. D. Khoe, D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Liu, Y.

J. J. G. M. van der Tol, H. de Waardt, Y. Liu, “A Mach–Zehnder-interferometer-based low-loss combiner,” IEEE Photon. Technol. Lett. 13, 1197–1199 (2001).
[CrossRef]

Martelli, F.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Mecozzi, A.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

A. Mecozzi, J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

Mørk, J.

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

A. Mecozzi, J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

Nielsen, M. L.

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

Oei, Y. S.

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

Patent, E. A.

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

Penmngs, E. C.

L. B. Soldano, E. C. Penmngs, “Optical multi-mode interference devices based on self-imaging principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Presi, M.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

Prucnal, P. R.

Raybon, G.

Y. H. Kao, I. V. Goltser, M. Jiang, M. N. Islam, G. Raybon, “Gain dispersion induced subpicosecond pulse breakup in a fiber and semiconductor laser amplifier combined system,” Appl. Phys. Lett. 69, 4221–4223 (1996).
[CrossRef]

Razaghi, M.

M. Razaghi, V. Ahmadi, M. J. Connelly, “Femtosecond pulse shaping using counter-propagating pulses in a semiconductor optical amplifier,” Opt. Quantum Electron. 41, 513–523 (2009).
[CrossRef]

M. Razaghi, V. Ahmadi, M. J. Connelly, “Comprehensive finite-difference time dependent beam propagation model of counter propagation picosecond pulses in a semiconductor optical amplifier,” J. Lightwave Technol. 27, 3162–3174 (2009).
[CrossRef]

Roy, J. N.

T. Chattopadhyay, J. N. Roy, “Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical tri-state logic gates,” Optik 122, 1073–1078 (2011).
[CrossRef]

Scaffetti, S.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Sibbet, W.

R. S. Grant, W. Sibbet, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Smit, M. K.

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

Soldano, L. B.

L. B. Soldano, E. C. Penmngs, “Optical multi-mode interference devices based on self-imaging principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Uenohara, H.

J. Kurumida, H. Uenohara, K. Kobayashi, “All-optical label recognition for time-domain signal using multistage switching scheme based on SOA-MZIs time domain label separation by SOA-MZI self-switching scheme,” Electron. Lett. 42, 1362–1363 (2006).
[CrossRef]

Van der Tol, J. J. G. M.

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

J. J. G. M. van der Tol, H. de Waardt, Y. Liu, “A Mach–Zehnder-interferometer-based low-loss combiner,” IEEE Photon. Technol. Lett. 13, 1197–1199 (2001).
[CrossRef]

Wonfor, A.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. S. Grant, W. Sibbet, “Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier,” Appl. Phys. Lett. 58, 1119–1121 (1991).
[CrossRef]

Y. H. Kao, I. V. Goltser, M. Jiang, M. N. Islam, G. Raybon, “Gain dispersion induced subpicosecond pulse breakup in a fiber and semiconductor laser amplifier combined system,” Appl. Phys. Lett. 69, 4221–4223 (1996).
[CrossRef]

Electron. Lett.

E. A. Patent, J. J. G. M. Van der Tol, M. L. Nielsen, J. J. M. Binsma, Y. S. Oei, J. Mørk, M. K. Smit, “Integrated SOA-MZI for pattern-effect-free amplification,” Electron. Lett. 41, 549–551 (2005).
[CrossRef]

J. Kurumida, H. Uenohara, K. Kobayashi, “All-optical label recognition for time-domain signal using multistage switching scheme based on SOA-MZIs time domain label separation by SOA-MZI self-switching scheme,” Electron. Lett. 42, 1362–1363 (2006).
[CrossRef]

IEEE J. Quantum Electron.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, “Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment,” IEEE J. Quantum Electron. 30, 1122–1131 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Top. Quantum Electron. 14, 779–788 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

E. A. Patent, J. J. G. M. van der Tol, J. J. M. Binsma, Y. S. Oei, E. A. J. M. Bente, M. K. Smit, “Self-switching in Mach–Zehnder interferometers with SOA phase shifters,” IEEE Photon. Technol. Lett. 17, 2301–2303 (2005).
[CrossRef]

J. J. G. M. van der Tol, H. de Waardt, Y. Liu, “A Mach–Zehnder-interferometer-based low-loss combiner,” IEEE Photon. Technol. Lett. 13, 1197–1199 (2001).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

H. J. S. Dorren, G. D. Khoe, D. Lenstra, “All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement,” Opt. Commun. 205, 247–252 (2002).
[CrossRef]

Opt. Quantum Electron.

M. Razaghi, V. Ahmadi, M. J. Connelly, “Femtosecond pulse shaping using counter-propagating pulses in a semiconductor optical amplifier,” Opt. Quantum Electron. 41, 513–523 (2009).
[CrossRef]

Optik

T. Chattopadhyay, J. N. Roy, “Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical tri-state logic gates,” Optik 122, 1073–1078 (2011).
[CrossRef]

Other

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic structure of the proposed SOA-based SISS. OC, optical circulator; ODL, optical delay line; SOA, semiconductor optical amplifier; X and Y , power splitting ratio in the input and output couplers.

Fig. 2.
Fig. 2.

Dynamic gain response of the SOA for two signal pulses to different offsets of the SOA.

Fig. 3.
Fig. 3.

Variation of phase difference between two signal pulses.

Fig. 4.
Fig. 4.

Gain ratio versus τ asym for different values of SOA small signal gain ( g 0 ).

Fig. 5.
Fig. 5.

Normalized output power P 4 / ( P 3 + P 4 ) from switched Port 4 versus (a)  τ asym for different values of SOA small signal gain ( g 0 ) and (b)  g 0 for τ asym = 10 ps . The inset shows extinction ratio ( P 4 / P 3 ) versus g 0 for τ asym = 10 ps .

Fig. 6.
Fig. 6.

Normalized output power of switched Port 4 versus (a)  τ asym for different values of input pulse energy and (b)  E in for τ asym = 10 ps . The inset shows extinction ratio versus E in for τ asym = 10 ps .

Fig. 7.
Fig. 7.

Normalized output power from switched Port 4 versus (a)  τ asym for different values of input pulse width and (b)  τ in for τ asym = 10 ps . The inset shows extinction ratio versus τ in for τ asym = 10 ps .

Fig. 8.
Fig. 8.

Normalized output power from switched Port 4 versus (a)  τ asym for different SOA length and (b)  L for τ asym = 10 ps . The inset shows extinction ratio versus L for τ asym = 10 ps .

Fig. 9.
Fig. 9.

Normalized output power from switched Port 4 versus (a)  τ asym for different values of couplers splitting coefficient ( X and Y ) and (b)  X ( Y ) for τ asym = 10 ps . The inset shows extinction ratio versus X ( Y ) for τ asym = 10 ps .

Fig. 10.
Fig. 10.

Effect of subpicosecond nonlinearities on (a) normalized average output power and (b) extinction ratio.

Fig. 11.
Fig. 11.

Normalized output power of switched Port 4 versus input pulse bit rate for the first and second pulses. The fixed parameters are τ asym = 10 ps , g 0 = 85 cm 1 , τ in = 200 fs , E in = 1 pJ , L = 500 μm , and X = Y = 0.3 .

Tables (1)

Tables Icon

Table 1. List of the Parameters Used in Simulation [18]

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P 3 ( t ) = P in 2 { X Y G u ( t ) + ( 1 X ) ( 1 Y ) G v ( t τ asym ) + 2 X Y ( 1 X ) ( 1 Y ) G u ( t ) G v ( t τ asym ) × cos [ φ u ( t ) φ v ( t τ asym ) ] }
P 4 ( t ) = P in 2 { X ( 1 Y ) G u ( t ) + ( 1 X ) Y G v ( t τ asym ) + 2 X Y ( 1 X ) ( 1 Y ) G u ( t ) G v ( t τ asym ) × cos [ φ u ( t ) φ v ( t τ asym ) ] } ,
Δ φ NL = φ u ( t ) φ v ( t τ asym ) = α N 2 ln ( G u ( t ) G u ( t τ asym ) ) ,
[ z i 2 β 2 2 τ 2 + γ 2 + ( γ 2 p 2 + i b 2 ) | V ( τ , z ) | 2 ] V ( τ , z ) = { 1 2 g N ( τ ) [ 1 f ( τ ) + i α N ] + 1 2 Δ g T ( τ ) ( 1 + i α T ) i 1 2 g ( τ , ω ) ω | ω 0 τ 1 4 2 g ( τ , ω ) ω 2 | ω 0 2 τ 2 } V ( τ , z ) ,
g N ( τ ) = g 0 exp ( 1 W s τ e s / τ S | V ( s ) | 2 d s ) ,
f ( τ ) = 1 + 1 τ SHB P SHB + U ( s ) e s / τ SHB | V ( τ s ) | 2 d s ,
Δ g T ( t ) = h 1 + U ( s ) e s / τ CH ( 1 e s / τ SHB ) | V ( τ s ) | 2 d s h 2 + U ( s ) e s / τ CH ( 1 e s / τ SHB ) | V ( τ s ) | 4 d s ,
g ( τ , ω ) ω | ω 0 = A 1 + B 1 [ g 0 g ( τ , ω 0 ) ] ,
2 g ( τ , ω ) ω 2 | ω 0 = A 2 + B 2 [ g 0 g ( τ , ω 0 ) ] ,
g ( τ , ω 0 ) = g N ( τ , ω 0 ) / f ( τ ) + Δ g T ( τ , ω 0 ) ,
g ( τ , ω ) = g ( τ , ω 0 ) + Δ ω g ( τ , ω ) ω | ω 0 + ( Δ ω ) 2 2 2 g ( τ , ω ) ω 2 | ω 0 .

Metrics