Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).

[CrossRef]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012).

[CrossRef]

C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A 86, 012323 (2012).

[CrossRef]

H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012).

[CrossRef]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 044302 (2012).

[CrossRef]

F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012).

[CrossRef]

B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012).

[CrossRef]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).

[CrossRef]

W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).

[CrossRef]

L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, “Extreme nonlocality with one photon,” New J. Phys. 13, 053054–053065(2011).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).

R. Chaves, and L. Davidovich, “Robustness of entanglement as a resource,” Phys. Rev. A 82, 052308 (2010).

[CrossRef]

A. Yildiz, “Optimal distillation of three-qubit W states,” Phys. Rev. A 82, 012317 (2010).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three photon W states,” J. Opt. Soc. Am. B 27, 2159–2164(2010).

[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).

[CrossRef]

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A 82, 022331 (2010).

[CrossRef]

B. He, Y. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009).

[CrossRef]

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).

[CrossRef]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).

[CrossRef]

B. He and J. A. Bergou, “Entanglement transformation with no classical communication,” Phys. Rev. A 78, 062328 (2008).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).

[CrossRef]

B. He, J. A. Bergou, and Z. Wang, “Implementation of quantum operations on single-photon qudits,” Phys. Rev. A 76, 042326 (2007).

[CrossRef]

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum- nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).

[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-nOT gate,” Phys. Rev. Lett. 93, 250502(2004).

[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum state engeneering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).

[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).

[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003).

[CrossRef]

C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901–167904 (2002).

[CrossRef]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902–167905 (2002).

[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).

[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404–270407 (2001).

[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).

[CrossRef]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).

[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).

[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

[CrossRef]

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000).

[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394 (1998).

[CrossRef]

A. Peres, “Nonlocal effects in Fock space,” Phys. Rev. Lett. 74, 4571–4571 (1995).

[CrossRef]

L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994).

[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]

S. Tan, D. Walls, and M. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).

[CrossRef]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum- nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).

[CrossRef]

B. He, Y. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009).

[CrossRef]

B. He and J. A. Bergou, “Entanglement transformation with no classical communication,” Phys. Rev. A 78, 062328 (2008).

[CrossRef]

B. He, J. A. Bergou, and Z. Wang, “Implementation of quantum operations on single-photon qudits,” Phys. Rev. A 76, 042326 (2007).

[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).

[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).

[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).

[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum state engeneering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).

[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).

[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394 (1998).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, “Extreme nonlocality with one photon,” New J. Phys. 13, 053054–053065(2011).

[CrossRef]

R. Chaves, and L. Davidovich, “Robustness of entanglement as a resource,” Phys. Rev. A 82, 052308 (2010).

[CrossRef]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).

[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum state engeneering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).

[CrossRef]

S. Tan, D. Walls, and M. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).

[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404–270407 (2001).

[CrossRef]

R. Chaves, and L. Davidovich, “Robustness of entanglement as a resource,” Phys. Rev. A 82, 052308 (2010).

[CrossRef]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012).

[CrossRef]

F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012).

[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).

[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).

[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).

[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).

[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

[CrossRef]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000).

[CrossRef]

L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994).

[CrossRef]

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).

[CrossRef]

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A 82, 022331 (2010).

[CrossRef]

B. He, Y. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009).

[CrossRef]

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).

[CrossRef]

B. He and J. A. Bergou, “Entanglement transformation with no classical communication,” Phys. Rev. A 78, 062328 (2008).

[CrossRef]

B. He, J. A. Bergou, and Z. Wang, “Implementation of quantum operations on single-photon qudits,” Phys. Rev. A 76, 042326 (2007).

[CrossRef]

L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, “Extreme nonlocality with one photon,” New J. Phys. 13, 053054–053065(2011).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).

[CrossRef]

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394 (1998).

[CrossRef]

A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).

[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902–167905 (2002).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902–167905 (2002).

[CrossRef]

C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901–167904 (2002).

[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).

[CrossRef]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).

[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).

[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

[CrossRef]

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).

[CrossRef]

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A 82, 022331 (2010).

[CrossRef]

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).

[CrossRef]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).

[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).

[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404–270407 (2001).

[CrossRef]

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).

[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).

[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).

[CrossRef]

C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901–167904 (2002).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum- nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-nOT gate,” Phys. Rev. Lett. 93, 250502(2004).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum- nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-nOT gate,” Phys. Rev. Lett. 93, 250502(2004).

[CrossRef]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum state engeneering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).

[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404–270407 (2001).

[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

A. Peres, “Nonlocal effects in Fock space,” Phys. Rev. Lett. 74, 4571–4571 (1995).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).

[CrossRef]

C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901–167904 (2002).

[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).

[CrossRef]

B. He, Y. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[CrossRef]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, “Extreme nonlocality with one photon,” New J. Phys. 13, 053054–053065(2011).

[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).

[CrossRef]

A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003).

[CrossRef]

A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003).

[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).

[CrossRef]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 044302 (2012).

[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).

[CrossRef]

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901–167904 (2002).

[CrossRef]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902–167905 (2002).

[CrossRef]

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum- nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

[CrossRef]

H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

S. Tan, D. Walls, and M. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).

[CrossRef]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, “Extreme nonlocality with one photon,” New J. Phys. 13, 053054–053065(2011).

[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).

[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

S. Tan, D. Walls, and M. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).

[CrossRef]

C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A 86, 012323 (2012).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

[CrossRef]

H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three photon W states,” J. Opt. Soc. Am. B 27, 2159–2164(2010).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010).

[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).

[CrossRef]

B. He, J. A. Bergou, and Z. Wang, “Implementation of quantum operations on single-photon qudits,” Phys. Rev. A 76, 042326 (2007).

[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).

[CrossRef]

A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).

[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three photon W states,” J. Opt. Soc. Am. B 27, 2159–2164(2010).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010).

[CrossRef]

A. Yildiz, “Optimal distillation of three-qubit W states,” Phys. Rev. A 82, 012317 (2010).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).

[CrossRef]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).

[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three photon W states,” J. Opt. Soc. Am. B 27, 2159–2164(2010).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).

[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).

[CrossRef]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 044302 (2012).

[CrossRef]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).

[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).

[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).

[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).

[CrossRef]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 044302 (2012).

[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).

[CrossRef]

A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010).

[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three photon W states,” J. Opt. Soc. Am. B 27, 2159–2164(2010).

[CrossRef]

W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011).

[CrossRef]

F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012).

[CrossRef]

B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012).

[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).

[CrossRef]

L. Heaney, A. Cabello, M. F. Santos, and V. Vedral, “Extreme nonlocality with one photon,” New J. Phys. 13, 053054–053065(2011).

[CrossRef]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum state engeneering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).

[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).

[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).

[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).

[CrossRef]

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000).

[CrossRef]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).

[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008).

[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012).

[CrossRef]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012).

[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011).

[CrossRef]

C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A 86, 012323 (2012).

[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394 (1998).

[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).

[CrossRef]

O. Göckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).

[CrossRef]

A. SenDe, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states,” Phys. Rev. A 68, 062306 (2003).

[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

[CrossRef]

R. Chaves, and L. Davidovich, “Robustness of entanglement as a resource,” Phys. Rev. A 82, 052308 (2010).

[CrossRef]

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum- nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

[CrossRef]

B. He, J. A. Bergou, and Z. Wang, “Implementation of quantum operations on single-photon qudits,” Phys. Rev. A 76, 042326 (2007).

[CrossRef]

A. Yildiz, “Optimal distillation of three-qubit W states,” Phys. Rev. A 82, 012317 (2010).

[CrossRef]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 044302 (2012).

[CrossRef]

Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009).

[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).

[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).

[CrossRef]

Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).

[CrossRef]

Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A 82, 022331 (2010).

[CrossRef]

B. He, Y. Ren, and J. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009).

[CrossRef]

B. He and J. A. Bergou, “Entanglement transformation with no classical communication,” Phys. Rev. A 78, 062328 (2008).

[CrossRef]

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).

[CrossRef]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012).

[CrossRef]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).

[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-nOT gate,” Phys. Rev. Lett. 93, 250502(2004).

[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).

[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903–167906 (2003).

[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404–080407 (2003).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]

S. Tan, D. Walls, and M. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).

[CrossRef]

L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994).

[CrossRef]

A. Peres, “Nonlocal effects in Fock space,” Phys. Rev. Lett. 74, 4571–4571 (1995).

[CrossRef]

C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901–167904 (2002).

[CrossRef]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902–167905 (2002).

[CrossRef]

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).

[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404–270407 (2001).

[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).

H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).

[CrossRef]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).