Abstract

The direct and indirect pumping could be used to excite Nd3+-activated crystals effectively. The advantage of direct pumping is the reduction of heat load, and the shortage is the low absorption of pump power. They are the contrary factors affecting the laser performance; hence, the direct pumping is not always better than indirect pumping. To compare the laser performance under direct pumping with that under indirect pumping, the self-frequency-doubling laser model that takes the heat load into account is developed, and the model is applied to the case of Nd3+:YAB crystal. For the typical experimental parameters, we derive the criteria to judge the preferential pumping for the given crystal.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Li, X. Yu, F. Chen, R. Yan, M. Luo, J. Yu, and D. Chen, “Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal,” Opt. Express 18, 7407–7414 (2010).
    [CrossRef]
  2. M. Montes, D. Jaque, Z. Luo, and Y. Huang, “Short-pulse generation from a resonantly pumped NdAl3(BO3)4 microchip laser,” Opt. Lett. 30, 397–398 (2005).
    [CrossRef]
  3. V. Lupei, G. Aka, and D. Vivien, “Enhanced fundamental and self-frequency-doubling laser emission efficiency in F3/24 directly pumped Nd-activated nonlinear crystals: the case of GdCa4O(BO3)3,” Appl. Phys. Lett. 81, 811–813 (2002).
    [CrossRef]
  4. V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level,” IEEE J. Quantum Electron. 38, 240–245 (2002).
    [CrossRef]
  5. N. Pavel, V. Lupei, and T. Taira, “1.34 μm efficient laser emission in highly-doped Nd:YAG under 885 nm diode pumping,” Opt. Express 13, 7948–7953 (2005).
    [CrossRef]
  6. X. Li, X. Yu, F. Chen, R. Yan, J. Yu, and D. Chen, “Laser properties of continuous-grown Nd:GdVO4/GdVO4 and Nd:YVO4/YVO4 composite crystals under direct pumping,” Opt. Express 17, 12869–12874 (2009).
    [CrossRef]
  7. Z. Luo, Y. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
    [CrossRef]
  8. V. Lupei, G. Aka, J. Petit, and D. Vivien, “Spectroscopic bases for efficiency enhancement and power scaling of self-frequency multiplication and self-sum-frequency mixing emission in Nd-doped nonlinear crystals,” J. Opt. Soc. Am. B 21, 1620–1629(2004).
    [CrossRef]
  9. X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
    [CrossRef]
  10. V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885 nm pumping,” Appl. Phys. Lett. 81, 2677–2679 (2002).
    [CrossRef]
  11. Y. Ma, Y. Zhang, X. Yu, X. Li, F. Chen, and R. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284, 2569–2572(2011).
    [CrossRef]
  12. Z. Huang, Y. Huang, Y. Chen, and Z. Luo, “Theoretical study on the laser performances of Nd3+:YAG and Nd3+:YVO4 under indirect and direct pumping,” J. Opt. Soc. Am. B 22, 2564–2569 (2005).
    [CrossRef]
  13. R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
    [CrossRef]
  14. V. Lupei, N. Pavel, and T. Taira, “Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd:Y3Al5O12 laser emission,” Appl. Phys. Lett. 83, 3653–3655 (2003).
    [CrossRef]
  15. V. Lupei and G. Aka, “Enhanced 532 nm emission by frequency-doubling of the one-micron Nd:yttrium vanadate laser in gadolinium calcium oxoborate,” J. Appl. Phys. 97, 056104 (2005).
    [CrossRef]
  16. K. Yang, S. Zhao, G. Li, and H. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40, 1252–1257 (2004).
    [CrossRef]
  17. A. Brenier, “Modelling of the NYAB self-doubling laser with focused Gaussian beams,” Opt. Commun. 141, 221–228 (1997).
    [CrossRef]
  18. X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001).
    [CrossRef]
  19. A. Brenier, “Numerical investigation of the CW end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers,” Opt. Commun. 129, 57–61 (1996).
    [CrossRef]
  20. D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, “Effects of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
    [CrossRef]
  21. D. Jaque, J. Capmany, Z. Luo, and J. Garcia Sole, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).
    [CrossRef]
  22. J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
    [CrossRef]
  23. B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
    [CrossRef]
  24. D. Jaque, J. Capmany, and J. Garcia Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd3+,” Appl. Phys. Lett. 74, 1788–1790 (1999).
    [CrossRef]
  25. Y. Chen, S. Wang, C. Kao, and T. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photonics Technol. Lett. 8, 1313–1315 (1996).
    [CrossRef]
  26. G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. 22, 89–94 (2003).
    [CrossRef]
  27. A. Brenier, G. Boulon, D. Jaque, and J. Garcia Sole, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
    [CrossRef]
  28. D. Jaque, J. Capmany, J. Garcia Sole, Z. Luo, and A. Jiang, “Continuous-wave laser properties of the self-frequency-doubling YAl3(BO3)4:Nd crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
    [CrossRef]
  29. J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
    [CrossRef]

2011

Y. Ma, Y. Zhang, X. Yu, X. Li, F. Chen, and R. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284, 2569–2572(2011).
[CrossRef]

2010

2009

X. Li, X. Yu, F. Chen, R. Yan, J. Yu, and D. Chen, “Laser properties of continuous-grown Nd:GdVO4/GdVO4 and Nd:YVO4/YVO4 composite crystals under direct pumping,” Opt. Express 17, 12869–12874 (2009).
[CrossRef]

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

2005

2004

K. Yang, S. Zhao, G. Li, and H. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40, 1252–1257 (2004).
[CrossRef]

Z. Luo, Y. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[CrossRef]

V. Lupei, G. Aka, J. Petit, and D. Vivien, “Spectroscopic bases for efficiency enhancement and power scaling of self-frequency multiplication and self-sum-frequency mixing emission in Nd-doped nonlinear crystals,” J. Opt. Soc. Am. B 21, 1620–1629(2004).
[CrossRef]

2003

V. Lupei, N. Pavel, and T. Taira, “Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd:Y3Al5O12 laser emission,” Appl. Phys. Lett. 83, 3653–3655 (2003).
[CrossRef]

G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. 22, 89–94 (2003).
[CrossRef]

2002

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885 nm pumping,” Appl. Phys. Lett. 81, 2677–2679 (2002).
[CrossRef]

V. Lupei, G. Aka, and D. Vivien, “Enhanced fundamental and self-frequency-doubling laser emission efficiency in F3/24 directly pumped Nd-activated nonlinear crystals: the case of GdCa4O(BO3)3,” Appl. Phys. Lett. 81, 811–813 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level,” IEEE J. Quantum Electron. 38, 240–245 (2002).
[CrossRef]

2001

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001).
[CrossRef]

2000

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, “Effects of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

1999

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Sole, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. Garcia Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd3+,” Appl. Phys. Lett. 74, 1788–1790 (1999).
[CrossRef]

1998

1997

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

D. Jaque, J. Capmany, Z. Luo, and J. Garcia Sole, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

A. Brenier, “Modelling of the NYAB self-doubling laser with focused Gaussian beams,” Opt. Commun. 141, 221–228 (1997).
[CrossRef]

1996

A. Brenier, “Numerical investigation of the CW end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers,” Opt. Commun. 129, 57–61 (1996).
[CrossRef]

Y. Chen, S. Wang, C. Kao, and T. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photonics Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

1989

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Aka, G.

V. Lupei and G. Aka, “Enhanced 532 nm emission by frequency-doubling of the one-micron Nd:yttrium vanadate laser in gadolinium calcium oxoborate,” J. Appl. Phys. 97, 056104 (2005).
[CrossRef]

V. Lupei, G. Aka, J. Petit, and D. Vivien, “Spectroscopic bases for efficiency enhancement and power scaling of self-frequency multiplication and self-sum-frequency mixing emission in Nd-doped nonlinear crystals,” J. Opt. Soc. Am. B 21, 1620–1629(2004).
[CrossRef]

G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. 22, 89–94 (2003).
[CrossRef]

V. Lupei, G. Aka, and D. Vivien, “Enhanced fundamental and self-frequency-doubling laser emission efficiency in F3/24 directly pumped Nd-activated nonlinear crystals: the case of GdCa4O(BO3)3,” Appl. Phys. Lett. 81, 811–813 (2002).
[CrossRef]

Bartschke, J.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Boller, K.-J.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Boulon, G.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Sole, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Brenier, A.

G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. 22, 89–94 (2003).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Sole, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

A. Brenier, “Modelling of the NYAB self-doubling laser with focused Gaussian beams,” Opt. Commun. 141, 221–228 (1997).
[CrossRef]

A. Brenier, “Numerical investigation of the CW end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers,” Opt. Commun. 129, 57–61 (1996).
[CrossRef]

Capmany, J.

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, “Effects of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

D. Jaque, J. Capmany, and J. Garcia Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd3+,” Appl. Phys. Lett. 74, 1788–1790 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. Garcia Sole, Z. Luo, and A. Jiang, “Continuous-wave laser properties of the self-frequency-doubling YAl3(BO3)4:Nd crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

D. Jaque, J. Capmany, Z. Luo, and J. Garcia Sole, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Chen, D.

Chen, F.

Chen, X.

Chen, Y.

Z. Huang, Y. Huang, Y. Chen, and Z. Luo, “Theoretical study on the laser performances of Nd3+:YAG and Nd3+:YVO4 under indirect and direct pumping,” J. Opt. Soc. Am. B 22, 2564–2569 (2005).
[CrossRef]

Y. Chen, S. Wang, C. Kao, and T. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photonics Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

Ding, X.

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Garcia Sole, J.

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, “Effects of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

D. Jaque, J. Capmany, and J. Garcia Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd3+,” Appl. Phys. Lett. 74, 1788–1790 (1999).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Sole, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. Garcia Sole, Z. Luo, and A. Jiang, “Continuous-wave laser properties of the self-frequency-doubling YAl3(BO3)4:Nd crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

D. Jaque, J. Capmany, Z. Luo, and J. Garcia Sole, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Goldring, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Hou, X.

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Huang, T.

Y. Chen, S. Wang, C. Kao, and T. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photonics Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

Huang, Y.

Huang, Z.

Jackel, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Jaque, D.

M. Montes, D. Jaque, Z. Luo, and Y. Huang, “Short-pulse generation from a resonantly pumped NdAl3(BO3)4 microchip laser,” Opt. Lett. 30, 397–398 (2005).
[CrossRef]

Z. Luo, Y. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[CrossRef]

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, “Effects of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

D. Jaque, J. Capmany, and J. Garcia Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd3+,” Appl. Phys. Lett. 74, 1788–1790 (1999).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Sole, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. Garcia Sole, Z. Luo, and A. Jiang, “Continuous-wave laser properties of the self-frequency-doubling YAl3(BO3)4:Nd crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998).
[CrossRef]

D. Jaque, J. Capmany, Z. Luo, and J. Garcia Sole, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Jiang, A.

Jiang, M.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Kao, C.

Y. Chen, S. Wang, C. Kao, and T. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photonics Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

Knappe, R.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Lavi, R.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Lebiush, E.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Li, G.

K. Yang, S. Zhao, G. Li, and H. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40, 1252–1257 (2004).
[CrossRef]

Li, X.

Liu, E.

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Liu, J.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

Liu, Y.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

Lu, B.

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Luo, M.

Luo, Z.

Lupei, V.

V. Lupei and G. Aka, “Enhanced 532 nm emission by frequency-doubling of the one-micron Nd:yttrium vanadate laser in gadolinium calcium oxoborate,” J. Appl. Phys. 97, 056104 (2005).
[CrossRef]

N. Pavel, V. Lupei, and T. Taira, “1.34 μm efficient laser emission in highly-doped Nd:YAG under 885 nm diode pumping,” Opt. Express 13, 7948–7953 (2005).
[CrossRef]

V. Lupei, G. Aka, J. Petit, and D. Vivien, “Spectroscopic bases for efficiency enhancement and power scaling of self-frequency multiplication and self-sum-frequency mixing emission in Nd-doped nonlinear crystals,” J. Opt. Soc. Am. B 21, 1620–1629(2004).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd:Y3Al5O12 laser emission,” Appl. Phys. Lett. 83, 3653–3655 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885 nm pumping,” Appl. Phys. Lett. 81, 2677–2679 (2002).
[CrossRef]

V. Lupei, G. Aka, and D. Vivien, “Enhanced fundamental and self-frequency-doubling laser emission efficiency in F3/24 directly pumped Nd-activated nonlinear crystals: the case of GdCa4O(BO3)3,” Appl. Phys. Lett. 81, 811–813 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level,” IEEE J. Quantum Electron. 38, 240–245 (2002).
[CrossRef]

Ma, Y.

Y. Ma, Y. Zhang, X. Yu, X. Li, F. Chen, and R. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284, 2569–2572(2011).
[CrossRef]

Montes, M.

M. Montes, D. Jaque, Z. Luo, and Y. Huang, “Short-pulse generation from a resonantly pumped NdAl3(BO3)4 microchip laser,” Opt. Lett. 30, 397–398 (2005).
[CrossRef]

Z. Luo, Y. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[CrossRef]

Pan, H.

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Pavel, N.

N. Pavel, V. Lupei, and T. Taira, “1.34 μm efficient laser emission in highly-doped Nd:YAG under 885 nm diode pumping,” Opt. Express 13, 7948–7953 (2005).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd:Y3Al5O12 laser emission,” Appl. Phys. Lett. 83, 3653–3655 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885 nm pumping,” Appl. Phys. Lett. 81, 2677–2679 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level,” IEEE J. Quantum Electron. 38, 240–245 (2002).
[CrossRef]

Petit, J.

Rams, J.

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, “Effects of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

Shao, Z.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

Taira, T.

N. Pavel, V. Lupei, and T. Taira, “1.34 μm efficient laser emission in highly-doped Nd:YAG under 885 nm diode pumping,” Opt. Express 13, 7948–7953 (2005).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd:Y3Al5O12 laser emission,” Appl. Phys. Lett. 83, 3653–3655 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885 nm pumping,” Appl. Phys. Lett. 81, 2677–2679 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level,” IEEE J. Quantum Electron. 38, 240–245 (2002).
[CrossRef]

Tal, A.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Tzuk, Y.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Vivien, D.

V. Lupei, G. Aka, J. Petit, and D. Vivien, “Spectroscopic bases for efficiency enhancement and power scaling of self-frequency multiplication and self-sum-frequency mixing emission in Nd-doped nonlinear crystals,” J. Opt. Soc. Am. B 21, 1620–1629(2004).
[CrossRef]

V. Lupei, G. Aka, and D. Vivien, “Enhanced fundamental and self-frequency-doubling laser emission efficiency in F3/24 directly pumped Nd-activated nonlinear crystals: the case of GdCa4O(BO3)3,” Appl. Phys. Lett. 81, 811–813 (2002).
[CrossRef]

Wallenstein, R.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

Wang, C.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

Wang, J.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

Wang, P.

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Wang, R.

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Wang, S.

Y. Chen, S. Wang, C. Kao, and T. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photonics Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

Wei, J.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

Wen, W.

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Yan, R.

Yang, K.

K. Yang, S. Zhao, G. Li, and H. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40, 1252–1257 (2004).
[CrossRef]

Yao, J.

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Yu, J.

Yu, X.

Y. Ma, Y. Zhang, X. Yu, X. Li, F. Chen, and R. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284, 2569–2572(2011).
[CrossRef]

X. Li, X. Yu, F. Chen, R. Yan, M. Luo, J. Yu, and D. Chen, “Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal,” Opt. Express 18, 7407–7414 (2010).
[CrossRef]

X. Li, X. Yu, F. Chen, R. Yan, J. Yu, and D. Chen, “Laser properties of continuous-grown Nd:GdVO4/GdVO4 and Nd:YVO4/YVO4 composite crystals under direct pumping,” Opt. Express 17, 12869–12874 (2009).
[CrossRef]

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Zhang, H.

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

Zhang, Y.

Y. Ma, Y. Zhang, X. Yu, X. Li, F. Chen, and R. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284, 2569–2572(2011).
[CrossRef]

Zhao, H.

K. Yang, S. Zhao, G. Li, and H. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40, 1252–1257 (2004).
[CrossRef]

Zhao, S.

K. Yang, S. Zhao, G. Li, and H. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40, 1252–1257 (2004).
[CrossRef]

Appl. Phys. Lett.

V. Lupei, G. Aka, and D. Vivien, “Enhanced fundamental and self-frequency-doubling laser emission efficiency in F3/24 directly pumped Nd-activated nonlinear crystals: the case of GdCa4O(BO3)3,” Appl. Phys. Lett. 81, 811–813 (2002).
[CrossRef]

Z. Luo, Y. Huang, M. Montes, and D. Jaque, “Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping,” Appl. Phys. Lett. 85, 715–717 (2004).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885 nm pumping,” Appl. Phys. Lett. 81, 2677–2679 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd:Y3Al5O12 laser emission,” Appl. Phys. Lett. 83, 3653–3655 (2003).
[CrossRef]

D. Jaque, J. Capmany, and J. Garcia Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd3+,” Appl. Phys. Lett. 74, 1788–1790 (1999).
[CrossRef]

IEEE J. Quantum Electron.

J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB lasers,” IEEE J. Quantum Electron. 33, 2295–2300 (1997).
[CrossRef]

K. Yang, S. Zhao, G. Li, and H. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40, 1252–1257 (2004).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level,” IEEE J. Quantum Electron. 38, 240–245 (2002).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. Chen, S. Wang, C. Kao, and T. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photonics Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

J. Appl. Phys.

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, “Effects of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” J. Appl. Phys. 87, 1042–1048 (2000).
[CrossRef]

B. Lu, J. Wang, H. Pan, M. Jiang, E. Liu, and X. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989).
[CrossRef]

V. Lupei and G. Aka, “Enhanced 532 nm emission by frequency-doubling of the one-micron Nd:yttrium vanadate laser in gadolinium calcium oxoborate,” J. Appl. Phys. 97, 056104 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.: Condens. Matter

D. Jaque, J. Capmany, Z. Luo, and J. Garcia Sole, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Opt. Commun.

A. Brenier, “Numerical investigation of the CW end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers,” Opt. Commun. 129, 57–61 (1996).
[CrossRef]

X. Ding, R. Wang, H. Zhang, X. Yu, W. Wen, P. Wang, and J. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282, 981–984 (2009).
[CrossRef]

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
[CrossRef]

Y. Ma, Y. Zhang, X. Yu, X. Li, F. Chen, and R. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284, 2569–2572(2011).
[CrossRef]

A. Brenier, “Modelling of the NYAB self-doubling laser with focused Gaussian beams,” Opt. Commun. 141, 221–228 (1997).
[CrossRef]

Opt. Express

Opt. Laser Technol.

J. Liu, J. Wang, Y. Liu, J. Wei, C. Wang, Z. Shao, and M. Jiang, “Performance of CW NYAB laser at 1.06 μm end-pumped by a high-power diode-laser-array,” Opt. Laser Technol. 32, 183–186 (2000).
[CrossRef]

Opt. Lett.

Opt. Mater.

G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. 22, 89–94 (2003).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Sole, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the pump and laser transitions under direct and indirect pumping.

Fig. 2.
Fig. 2.

Plots of the calculated and experimental results, where the experimental results are taken from [29].

Fig. 3.
Fig. 3.

(a) Nonlinear loss δ2 and (b) heat-induced loss δ3 varying with the Nd3+ concentration for different crystal lengths.

Fig. 4.
Fig. 4.

SFD output versus the Nd3+ concentration for the different crystal length under direct and indirect pumping.

Fig. 5.
Fig. 5.

(a) SHG efficiency and (b) the efficiency of emission at the fundamental frequency varying with Nd3+ concentration under direct and indirect pumping for some crystal lengths.

Fig. 6.
Fig. 6.

3D plot of the SFD output as a function of Nd3+ concentration and the crystal length.

Fig. 7.
Fig. 7.

3D plot of SHG efficiency as a function of Nd3+ concentration and crystal length.

Fig. 8.
Fig. 8.

Curves projected from Fig. 6. Curve 1 is the relationship between Nd3+ concentration and crystal length that makes the SFD output under direct pumping equal that under indirect pumping. Curves 2 and 3 are the relationships between Nd3+ concentration and crystal length maximizing the SFD output under direct pumping as well as indirect pumping, respectively.

Fig. 9.
Fig. 9.

Curve 1 in Fig. 8 for the different incident pump power Pp0 and the transmission T1.

Fig. 10.
Fig. 10.

3D plot of the incident pump threshold as a function of Nd3+ concentration and crystal length.

Fig. 11.
Fig. 11.

Curves obtained from Fig. 10 by projection. Curve 1 represents the relationship between Nd3+ concentration and crystal length that makes the incident pump threshold under direct pumping equal that under indirect pumping. Curves 2 and 3 represent the relationships between Nd3+ concentration and crystal length minimizing the incident pump threshold under direct and indirect pumping.

Tables (1)

Tables Icon

Table 1. Optical and Spectroscopic Data of Nd3+:YAB Crystal

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

dN(r,z)dt=σpPp0ϕp(r,z)hνp[N0N(r,z)]σePc(z)ϕc(r,z)hνeN(r,z)N(r,z)τf(N0)=0,
N(r,z)=σpN0Pp0ϕp(r,z)/hνpσpPp0ϕp(r,z)/hνp+σePc(z)ϕc(r,z)/hνe+1/τf(N0).
G=20L02πσeσpN0Pp0ϕp(r,z)/hνpσpPp0ϕp(r,z)/hνp+σePc(z)ϕc(r,z)/hνe+1/τf(N0)ϕc(r,z)rdrdz,
ϕp(r,z)=2πwp2(z)exp[2r2wp2(z)][exp(αpz)+exp(αpz2αpL)],
ϕc(r,z)=2πwe2(z)exp[2r2we2(z)],
G=010L4σeσpN0Pp0πwp2(z)hνpywe2(z)wp2(z)[exp(αpz)+exp(αpz2αpL)]2σpPp0πwp2(z)hνpywe2(z)wp2(z)[exp(αpz)+exp(αpz2αpL)]+2σePc(z)πwe2(z)hν1y+1τf(N0)dzdy,
G=010L4σ1σpN0Pp0aηqya[exp(αpz)+exp(αpz2αpL)]2σpPp0aηqya[exp(αpz)+exp(αpz2αpL)]+2σ1Pcy+πw12hν1τf(N0)dzdy,
δ1=2δLln(1T1),
δ2=4κPc=8ω2deff2L2Pcπwe2c3ε0n3exp(α2L),
P2=κPc2T2,
δ3=1|0rbexp[iΔφ(r)]exp(2r2we2)rdr0rbexp(2r2we2)rdr|2,Δφ(r)=(1ηq)Pp0(1e2αpL)2Kcλp(dndT+αTn){1+ln(rb2wp2),rwpr2wp2+ln(rb2r2),rwp,
010L4σ1σpN0Pp0aηqya[exp(αpz)+exp(αpz2αpL)]2σpPp0aηqya[exp(αpz)+exp(αpz2αpL)]+2σ1Pcy+πw12hν1τf(N0)dzdy=1+2δLln(1T1)+8ω2deff2L2Pcπwe2c3ε0n3exp(α2L)|0rbexp[iΔφ(r)]exp(2r2we2)rdr0rbexp(2r2we2)rdr|2.
010L4σ1σpN0Pthaηqya[exp(αpz)+exp(αpz2αpL)]2σpPthaηqya[exp(αpz)+exp(αpz2αpL)]+πw12hν1τf(N0)dzdy=1+2δLln(1T1)|0rbexp[iΔφ(r)]exp(2r2we2)rdr0rbexp(2r2we2)rdr|2,
Δφ(r)=(1ηq)Pth(1e2αpL)2Kcλp(dndT+αTn){1+ln(rb2wp2),rwpr2wp2+ln(rb2r2),rwp.

Metrics