Abstract

A theoretical quantum teleportation protocol is suggested to teleport accelerated and nonaccelerated information over different classes of accelerated quantum channels. For the accelerated information, it is shown that the fidelity of the teleported state increases as the entanglement of the initial quantum channel increases. However, as the difference between the accelerations of the channel and the teleported state decreases, the fidelity of the teleported information increases. The fidelity of the nonaccelerated information increases as the entanglement of the initial quantum channel increases, while the accelerations of the quantum channel have a little effect. The possibility of sending quantum information over accelerated quantum channels is much better than sending classical information.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Unruh and R. Wald, “Acceleration radiation in interacting field theories,” Phys. Rev. D 29, 1047–1056 (1984).
    [CrossRef]
  2. P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006).
    [CrossRef]
  3. M. Han, S. Olson, and J. Dowling, “Generating entangled photons from the vacuum by accelerated measurements: quantum-information theory and the Unruh–Davies effect,” Phys. Rev. A 78, 022302 (2008).
    [CrossRef]
  4. J. Wang and J. Jing, “Quantum decoherence in noninertial frames,” Phys. Rev. A 82, 032324 (2010).
    [CrossRef]
  5. J. Said and K. Adami, “Einstein–Podolsky–Rosen correlation in Kerr–Newman spacetime,” Phys. Rev. D 81, 124012 (2010).
    [CrossRef]
  6. M. Montero, J. Leòn, and E. Martin-Martìnez, “Fermionic entanglement extinction in noninertial frames,” Phys. Rev. A 84, 042320 (2011).
    [CrossRef]
  7. J. Wang and J. Jing, “Multipartite entanglement of fermionic systems in noninertial frames,” Phys. Rev. A 83, 022314 (2011).
    [CrossRef]
  8. Y. Nambu and Y. Ohsumi, “Classical and quantum correlations of scalar field in the inflationary universe,” Phys. Rev. D 84, 044028 (2011).
    [CrossRef]
  9. M. Del Rey, D. Porras, and E. Martin-Martìnez, “Simulating accelerated atoms coupled to a quantum field,” Phys. Rev. A 85, 022511 (2012).
    [CrossRef]
  10. N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012).
    [CrossRef]
  11. N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012).
    [CrossRef]
  12. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  13. S. J. van Enk and T. Rudolph, “Quantum communication protocols using the vacuum,” Quantum Inf. Comput. 3, 423–430 (2003).
  14. J. Jin, S. Park, and Y. Kown, “Quantum teleportation in three parties with an accelerated receiver” Chaos Solitons Fractals 28, 313–319 (2006).
    [CrossRef]
  15. A. G. S. Landulfo and G. E. A. Matsas, “Sudden death of entanglement and teleportation fidelity loss via the Unruh effect,” Phys. Rev. A 80, 032315 (2009).
    [CrossRef]
  16. N. Metwally, “Usefulness classes of travelling entangled channels in noninertial frames,” arXiv:1201.5941 (2012).
  17. B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
    [CrossRef]
  18. B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys B 72, 35–42 (2001).
    [CrossRef]
  19. E. M.-Martinez and I. Fuentes, “Redistribution of particle and anti-particle entanglement in non-inertial frames,” Phys. Rev. A 83, 052306 (2011).
    [CrossRef]
  20. D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
    [CrossRef]
  21. M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the Unruh–Hawking effect” Phys. Rev. Lett 105, 151301 (2010).
    [CrossRef]
  22. P. M. Alsing and G. I. Milburn, “Teleportation with a uniform accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003).
    [CrossRef]
  23. N. Gershenfeld and I. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
    [CrossRef]

2012 (3)

M. Del Rey, D. Porras, and E. Martin-Martìnez, “Simulating accelerated atoms coupled to a quantum field,” Phys. Rev. A 85, 022511 (2012).
[CrossRef]

N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012).
[CrossRef]

N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012).
[CrossRef]

2011 (4)

M. Montero, J. Leòn, and E. Martin-Martìnez, “Fermionic entanglement extinction in noninertial frames,” Phys. Rev. A 84, 042320 (2011).
[CrossRef]

J. Wang and J. Jing, “Multipartite entanglement of fermionic systems in noninertial frames,” Phys. Rev. A 83, 022314 (2011).
[CrossRef]

Y. Nambu and Y. Ohsumi, “Classical and quantum correlations of scalar field in the inflationary universe,” Phys. Rev. D 84, 044028 (2011).
[CrossRef]

E. M.-Martinez and I. Fuentes, “Redistribution of particle and anti-particle entanglement in non-inertial frames,” Phys. Rev. A 83, 052306 (2011).
[CrossRef]

2010 (4)

D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
[CrossRef]

M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the Unruh–Hawking effect” Phys. Rev. Lett 105, 151301 (2010).
[CrossRef]

J. Wang and J. Jing, “Quantum decoherence in noninertial frames,” Phys. Rev. A 82, 032324 (2010).
[CrossRef]

J. Said and K. Adami, “Einstein–Podolsky–Rosen correlation in Kerr–Newman spacetime,” Phys. Rev. D 81, 124012 (2010).
[CrossRef]

2009 (1)

A. G. S. Landulfo and G. E. A. Matsas, “Sudden death of entanglement and teleportation fidelity loss via the Unruh effect,” Phys. Rev. A 80, 032315 (2009).
[CrossRef]

2008 (1)

M. Han, S. Olson, and J. Dowling, “Generating entangled photons from the vacuum by accelerated measurements: quantum-information theory and the Unruh–Davies effect,” Phys. Rev. A 78, 022302 (2008).
[CrossRef]

2006 (2)

J. Jin, S. Park, and Y. Kown, “Quantum teleportation in three parties with an accelerated receiver” Chaos Solitons Fractals 28, 313–319 (2006).
[CrossRef]

P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006).
[CrossRef]

2003 (2)

S. J. van Enk and T. Rudolph, “Quantum communication protocols using the vacuum,” Quantum Inf. Comput. 3, 423–430 (2003).

P. M. Alsing and G. I. Milburn, “Teleportation with a uniform accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003).
[CrossRef]

2001 (1)

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys B 72, 35–42 (2001).
[CrossRef]

2000 (1)

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

1997 (1)

N. Gershenfeld and I. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1984 (1)

W. Unruh and R. Wald, “Acceleration radiation in interacting field theories,” Phys. Rev. D 29, 1047–1056 (1984).
[CrossRef]

Adami, K.

J. Said and K. Adami, “Einstein–Podolsky–Rosen correlation in Kerr–Newman spacetime,” Phys. Rev. D 81, 124012 (2010).
[CrossRef]

Adesso, G.

M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the Unruh–Hawking effect” Phys. Rev. Lett 105, 151301 (2010).
[CrossRef]

Alsing, P.

P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006).
[CrossRef]

Alsing, P. M.

P. M. Alsing and G. I. Milburn, “Teleportation with a uniform accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003).
[CrossRef]

Aspachs, M.

M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the Unruh–Hawking effect” Phys. Rev. Lett 105, 151301 (2010).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Bruschi, D.

N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012).
[CrossRef]

N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012).
[CrossRef]

Bruschi, D. E.

D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
[CrossRef]

Chuang, I.

N. Gershenfeld and I. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Del Rey, M.

M. Del Rey, D. Porras, and E. Martin-Martìnez, “Simulating accelerated atoms coupled to a quantum field,” Phys. Rev. A 85, 022511 (2012).
[CrossRef]

Dowling, J.

M. Han, S. Olson, and J. Dowling, “Generating entangled photons from the vacuum by accelerated measurements: quantum-information theory and the Unruh–Davies effect,” Phys. Rev. A 78, 022302 (2008).
[CrossRef]

Dragan, A.

D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
[CrossRef]

Englert, B.-G.

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys B 72, 35–42 (2001).
[CrossRef]

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

Friis, N.

N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012).
[CrossRef]

N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012).
[CrossRef]

Fuentes, I.

N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012).
[CrossRef]

E. M.-Martinez and I. Fuentes, “Redistribution of particle and anti-particle entanglement in non-inertial frames,” Phys. Rev. A 83, 052306 (2011).
[CrossRef]

D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
[CrossRef]

M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the Unruh–Hawking effect” Phys. Rev. Lett 105, 151301 (2010).
[CrossRef]

Gershenfeld, N.

N. Gershenfeld and I. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[CrossRef]

Han, M.

M. Han, S. Olson, and J. Dowling, “Generating entangled photons from the vacuum by accelerated measurements: quantum-information theory and the Unruh–Davies effect,” Phys. Rev. A 78, 022302 (2008).
[CrossRef]

Jin, J.

J. Jin, S. Park, and Y. Kown, “Quantum teleportation in three parties with an accelerated receiver” Chaos Solitons Fractals 28, 313–319 (2006).
[CrossRef]

Jing, J.

J. Wang and J. Jing, “Multipartite entanglement of fermionic systems in noninertial frames,” Phys. Rev. A 83, 022314 (2011).
[CrossRef]

J. Wang and J. Jing, “Quantum decoherence in noninertial frames,” Phys. Rev. A 82, 032324 (2010).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Kown, Y.

J. Jin, S. Park, and Y. Kown, “Quantum teleportation in three parties with an accelerated receiver” Chaos Solitons Fractals 28, 313–319 (2006).
[CrossRef]

Landulfo, A. G. S.

A. G. S. Landulfo and G. E. A. Matsas, “Sudden death of entanglement and teleportation fidelity loss via the Unruh effect,” Phys. Rev. A 80, 032315 (2009).
[CrossRef]

Lee, A. R.

N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012).
[CrossRef]

Leòn, J.

M. Montero, J. Leòn, and E. Martin-Martìnez, “Fermionic entanglement extinction in noninertial frames,” Phys. Rev. A 84, 042320 (2011).
[CrossRef]

Louko, J.

N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012).
[CrossRef]

N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012).
[CrossRef]

D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
[CrossRef]

M.-Martinez, E.

E. M.-Martinez and I. Fuentes, “Redistribution of particle and anti-particle entanglement in non-inertial frames,” Phys. Rev. A 83, 052306 (2011).
[CrossRef]

Mann, R.

P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006).
[CrossRef]

Martin-Martìnez, E.

M. Del Rey, D. Porras, and E. Martin-Martìnez, “Simulating accelerated atoms coupled to a quantum field,” Phys. Rev. A 85, 022511 (2012).
[CrossRef]

M. Montero, J. Leòn, and E. Martin-Martìnez, “Fermionic entanglement extinction in noninertial frames,” Phys. Rev. A 84, 042320 (2011).
[CrossRef]

Martn-Martnez, E.

D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
[CrossRef]

Matsas, G. E. A.

A. G. S. Landulfo and G. E. A. Matsas, “Sudden death of entanglement and teleportation fidelity loss via the Unruh effect,” Phys. Rev. A 80, 032315 (2009).
[CrossRef]

Metwally, N.

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys B 72, 35–42 (2001).
[CrossRef]

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

N. Metwally, “Usefulness classes of travelling entangled channels in noninertial frames,” arXiv:1201.5941 (2012).

Milburn, G. I.

P. M. Alsing and G. I. Milburn, “Teleportation with a uniform accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003).
[CrossRef]

Montero, M.

M. Montero, J. Leòn, and E. Martin-Martìnez, “Fermionic entanglement extinction in noninertial frames,” Phys. Rev. A 84, 042320 (2011).
[CrossRef]

Nambu, Y.

Y. Nambu and Y. Ohsumi, “Classical and quantum correlations of scalar field in the inflationary universe,” Phys. Rev. D 84, 044028 (2011).
[CrossRef]

Ohsumi, Y.

Y. Nambu and Y. Ohsumi, “Classical and quantum correlations of scalar field in the inflationary universe,” Phys. Rev. D 84, 044028 (2011).
[CrossRef]

Olson, S.

M. Han, S. Olson, and J. Dowling, “Generating entangled photons from the vacuum by accelerated measurements: quantum-information theory and the Unruh–Davies effect,” Phys. Rev. A 78, 022302 (2008).
[CrossRef]

Park, S.

J. Jin, S. Park, and Y. Kown, “Quantum teleportation in three parties with an accelerated receiver” Chaos Solitons Fractals 28, 313–319 (2006).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Porras, D.

M. Del Rey, D. Porras, and E. Martin-Martìnez, “Simulating accelerated atoms coupled to a quantum field,” Phys. Rev. A 85, 022511 (2012).
[CrossRef]

Rudolph, T.

S. J. van Enk and T. Rudolph, “Quantum communication protocols using the vacuum,” Quantum Inf. Comput. 3, 423–430 (2003).

Said, J.

J. Said and K. Adami, “Einstein–Podolsky–Rosen correlation in Kerr–Newman spacetime,” Phys. Rev. D 81, 124012 (2010).
[CrossRef]

Schuller, I. F.

P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006).
[CrossRef]

Tessier, T.

P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006).
[CrossRef]

Unruh, W.

W. Unruh and R. Wald, “Acceleration radiation in interacting field theories,” Phys. Rev. D 29, 1047–1056 (1984).
[CrossRef]

van Enk, S. J.

S. J. van Enk and T. Rudolph, “Quantum communication protocols using the vacuum,” Quantum Inf. Comput. 3, 423–430 (2003).

Wald, R.

W. Unruh and R. Wald, “Acceleration radiation in interacting field theories,” Phys. Rev. D 29, 1047–1056 (1984).
[CrossRef]

Wang, J.

J. Wang and J. Jing, “Multipartite entanglement of fermionic systems in noninertial frames,” Phys. Rev. A 83, 022314 (2011).
[CrossRef]

J. Wang and J. Jing, “Quantum decoherence in noninertial frames,” Phys. Rev. A 82, 032324 (2010).
[CrossRef]

Appl. Phys B (1)

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys B 72, 35–42 (2001).
[CrossRef]

Chaos Solitons Fractals (1)

J. Jin, S. Park, and Y. Kown, “Quantum teleportation in three parties with an accelerated receiver” Chaos Solitons Fractals 28, 313–319 (2006).
[CrossRef]

J. Mod. Opt. (1)

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

Phys. Rev. A (9)

A. G. S. Landulfo and G. E. A. Matsas, “Sudden death of entanglement and teleportation fidelity loss via the Unruh effect,” Phys. Rev. A 80, 032315 (2009).
[CrossRef]

M. Montero, J. Leòn, and E. Martin-Martìnez, “Fermionic entanglement extinction in noninertial frames,” Phys. Rev. A 84, 042320 (2011).
[CrossRef]

J. Wang and J. Jing, “Multipartite entanglement of fermionic systems in noninertial frames,” Phys. Rev. A 83, 022314 (2011).
[CrossRef]

E. M.-Martinez and I. Fuentes, “Redistribution of particle and anti-particle entanglement in non-inertial frames,” Phys. Rev. A 83, 052306 (2011).
[CrossRef]

D. E. Bruschi, J. Louko, E. Martn-Martnez, A. Dragan, and I. Fuentes, “Unruh effect in quantum information beyond the single-mode approximation,” Phys. Rev. A 82, 042332(2010).
[CrossRef]

P. Alsing, I. F. Schuller, R. Mann, and T. Tessier, “Entanglement of Dirac fields in noninertial frames,” Phys. Rev. A 74, 032326 (2006).
[CrossRef]

M. Han, S. Olson, and J. Dowling, “Generating entangled photons from the vacuum by accelerated measurements: quantum-information theory and the Unruh–Davies effect,” Phys. Rev. A 78, 022302 (2008).
[CrossRef]

J. Wang and J. Jing, “Quantum decoherence in noninertial frames,” Phys. Rev. A 82, 032324 (2010).
[CrossRef]

M. Del Rey, D. Porras, and E. Martin-Martìnez, “Simulating accelerated atoms coupled to a quantum field,” Phys. Rev. A 85, 022511 (2012).
[CrossRef]

Phys. Rev. D (5)

N. Friis, D. Bruschi, J. Louko, and I. Fuentes, “Motion generates entanglement,” Phys. Rev. D 85, 081701 (2012).
[CrossRef]

N. Friis, A. R. Lee, D. Bruschi, and J. Louko, “Kinematic entanglement degradation of fermionic cavity modes,” Phys. Rev. D 85, 025012 (2012).
[CrossRef]

J. Said and K. Adami, “Einstein–Podolsky–Rosen correlation in Kerr–Newman spacetime,” Phys. Rev. D 81, 124012 (2010).
[CrossRef]

Y. Nambu and Y. Ohsumi, “Classical and quantum correlations of scalar field in the inflationary universe,” Phys. Rev. D 84, 044028 (2011).
[CrossRef]

W. Unruh and R. Wald, “Acceleration radiation in interacting field theories,” Phys. Rev. D 29, 1047–1056 (1984).
[CrossRef]

Phys. Rev. Lett (1)

M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the Unruh–Hawking effect” Phys. Rev. Lett 105, 151301 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

P. M. Alsing and G. I. Milburn, “Teleportation with a uniform accelerated partner,” Phys. Rev. Lett. 91, 180404 (2003).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, and A. Peres, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Quantum Inf. Comput. (1)

S. J. van Enk and T. Rudolph, “Quantum communication protocols using the vacuum,” Quantum Inf. Comput. 3, 423–430 (2003).

Science (1)

N. Gershenfeld and I. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997).
[CrossRef]

Other (1)

N. Metwally, “Usefulness classes of travelling entangled channels in noninertial frames,” arXiv:1201.5941 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Minkowski space–time diagram for Alice, Bob, and Rob, who has the unknown information. Accelerated users Alice and Bob travel with uniform accelerations r1 and r2, respectively, in region I. Theses users are causally disconnected from their antiusers in region II. The unknown information is coded in Rob’s qubit, which is accelerated with another different acceleration r3. Quantum teleportation is achieved in region I, where Alice’s aim is teleporting Rob’s state to Bob.

Fig. 2.
Fig. 2.

Fidelity FPa of the accelerated teleported state, where the partners use a quantum channel initially prepared in MES, i.e., p=0. The dotted, dashed, and solid curves are plotted for r3=0.1, 0.3, and 0.8, respectively, while r1=r2=0.7. The lowest curve represents the fidelity of the nonaccelerated information FPs.

Fig. 3.
Fig. 3.

Same as Fig. 2 but the partners share an initially a pure state. The top three curves represent the fidelity of the accelerated teleported state FPa, while the bottom three curves represent the fidelity of nonaccelerated teleported state FPs. The solid, dashed, and dotted curves are for p=0.1, 0.2, and 0.3, respectively, where r1=r2=r3=0.7.

Fig. 4.
Fig. 4.

Fidelity of the accelerated information that is initially coded in the state |ψu=(1)/(2)(|0+|1), where the used accelerated channel is prepared initially in (left) MES and (right) pure state (partial entangled state with p=0.5). The solid, dashed, and dotted curves are for r1=r2=0.8, 0.5, and 0.0001, respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ρp=14((1q)pp(1q)p(1+q)(1+q)pp(1+q)(1+q)p(1q)pp(1q)),
ζ=rtanh(tx),χ=x2t2,
ak=cosrck(I)exp(iϕ)sinrdk(II),bk=exp(iϕ)sinrck(I)+cosrdk(II),
|0kM=cosr|0kI|0kII+sinr|1kI|1kII,|1kM=ak|0kM=|1kI|0kII.
ρ˜p=(ϱ11ϱ12ϱ13ϱ14ϱ21ϱ22ϱ23ϱ24ϱ31ϱ32ϱ33ϱ34ϱ41ϱ42ϱ43ϱ44),
ϱ11=14[1q4(1+2cos2r1)+1q4cos2r2],ϱ12=p8cosr2[3cos2r1],ϱ13=p8cosr1[1+cos2r2],ϱ14=1q4cosr1cosr2,ϱ21=p8cos2r2[3cos2r1],ϱ22=116[q1+2(q+1)cos2r1+(q+3)cos2r2],ϱ23=1+q4cosr1cosr2,ϱ24=p8cosr1[3cos2r2],ϱ31=ϱ13,ϱ32=ϱ23,ϱ33=14[1+q2cos2r1+1+q4(1+cos2r2)],ϱ34=p8cosr1cosr2(1+cos2r1),ϱ41=ϱ14,ϱ42=ϱ24,ϱ43=ϱ34,ϱ44=14[9q41+q2cos2r13+q4cos2r2].
|ψR=α|0+β|1,
ρR=|α|2cos2r3|00|+|αsinr3+β|2|11|.
ρs=CNOTρRρ˜pCNOT.
ρB=μ00|00|+μ01|01|+μ10|10|+μ11|11|,
μ00=14((B1+B2)(ϱ11+ϱ33)+(B1B2)(ϱ13+ϱ31)),μ01=14((B1+B2)(ϱ12+ϱ34)+(B1B2)(ϱ14+ϱ32)),μ10=14((B1+B2)(ϱ21+ϱ43)+(B1B2)(ϱ23+ϱ41)),μ11=14((B1+B2)(ϱ22+ϱ44)+(B1B2)(ϱ24+ϱ42)),
FPa=B1μ00+B2μ11.
ρRs=|α|2|00|+αβ*|01|+α*β|10|+|β|2|11|.
ρB=ν00|00|+ν01|01|+ν10|10|+ν11|11|,
ν00=14{ϱ11+ϱ33+(|α|2|β|2)(ϱ13+ϱ31)λ+ϱ12λ(ϱ13+ϱ23ϱ33)},ν01=14{ϱ42+ϱ34+(|α|2|β|2)(ϱ14+ϱ32)λ+ϱ42λ(ϱ34+ϱ32ϱ14)},ν10=14{ϱ21+ϱ43+(|α|2|β|2)(ϱ23+ϱ41)λ+ϱ21λ(ϱ43+ϱ41ϱ23)},ν11=14{ϱ22+ϱ44+(|α|2|β|2)(ϱ24+ϱ42)λ+ϱ22λ(ϱ44+ϱ42ϱ24)},
FPs=|α|2ν00+αβ*ν01+α*βν10+|β|2ν11.

Metrics