Abstract

Vibrational sum-frequency-generation (SFG) spectroscopy experiments at electrified interfaces involve incident laser radiation at frequencies in the IR and near-IR/visible regions as well as a static electric field on the surface. Here we show that mixing the three fields present on the surface can result in third-order effects in resonant SFG signals. This was achieved for closed packed self-assembled monolayers (SAMs) with molecular groups of high optical nonlinearity and surface potentials similar to those typically applied in cyclic voltammograms. Broadband SFG spectroscopy was applied to study a hydrophobic well-ordered araliphatic SAM on an Au(111) surface using a thin-layer analysis cell for spectro-electrochemical investigations in a 100 mM NaOH electrolyte solution. Resonant contributions were experimentally separated from nonresonant contributions of the Au substrate and theoretically analyzed using a fitting function including third-order terms. The resulting ratio of third-order to second-order susceptibilities was estimated to be O(1010)m/V.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
    [CrossRef]
  2. S. Ong, X. Zhao, and K. B. Eisenthal, “Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
    [CrossRef]
  3. X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
    [CrossRef]
  4. A. Eftekhari-Bafrooei and E. Borguet, “Effect of electric fields on the ultrafast vibrational relaxation of water at a charged solid-liquid interface as probed by vibrational sum frequency generation,” J. Phys. Chem. Lett. 2, 1353–1358 (2011).
    [CrossRef]
  5. K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
    [CrossRef]
  6. D. E. Gragson and G. L. Richmond, “Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy,” J. Phys. Chem. B 102, 3847–3861 (1998).
    [CrossRef]
  7. J. Wang, Z. Paszti, M. A. Even, and Z. Chen, “Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model,” J. Phys. Chem. B 108, 3625–3632 (2004).
    [CrossRef]
  8. S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
    [CrossRef]
  9. M. I. Muglali, A. Bashir, A. Terfort, and M. Rohwerder, “Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers,” Phys. Chem. Chem. Phys. 13, 15530–15538(2011).
    [CrossRef]
  10. B. Schupbach and A. Terfort, “A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini,” Org. Biomol. Chem. 8, 3552–3562 (2010).
    [CrossRef]
  11. D. Verreault, V. Kurz, C. Howell, and P. Koelsch, “Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy,” Rev. Sci. Instrum. 81, 063111 (2010).
    [CrossRef]
  12. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645–13647 (2007).
    [CrossRef]
  13. J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
    [CrossRef]
  14. X. Cai and S. Baldelli, “Surface barrier properties of self-assembled monolayers as deduced by sum frequency generation spectroscopy and electrochemistry,” J. Phys. Chem. C 115, 19178–19189 (2011).
    [CrossRef]
  15. A. T. D’Agostino and W. N. Hansen, “Observation of systematic electrochemically induced binding energy shift in the XPS spectra of emersed Cs+ double layer species,” Surf. Sci. 165, 268–276 (1986).
    [CrossRef]
  16. W. Zhou and D. M. Kolb, “Influence of an electrostatic potential at the metal/electrolyte interface on the electron binding energy of adsorbates as probed by x-ray photoelectron spectroscopy,” Surf. Sci. 573, 176–182 (2004).
    [CrossRef]
  17. C. A. Widrig, C. Chung, and M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes,” J. Electroanal. Chem. 310, 335–359 (1991).
    [CrossRef]
  18. D.-F. Yang, H. Al-Maznai, and M. Morin, “Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode,” J. Phys. Chem. B 101, 1158–1166 (1997).
    [CrossRef]
  19. M. Byloos, H. Al-Maznai, and M. Morin, “Formation of a self-assembled monolayer via the electrospreading of physisorbed micelles of thiolates,” J. Phys. Chem. B 103, 6554–6561 (1999).
    [CrossRef]
  20. W. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb, “Structure and electrochemistry of 4,4-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111),” Langmuir 20, 4590–4595 (2004).
    [CrossRef]
  21. M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

2012 (1)

S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
[CrossRef]

2011 (4)

M. I. Muglali, A. Bashir, A. Terfort, and M. Rohwerder, “Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers,” Phys. Chem. Chem. Phys. 13, 15530–15538(2011).
[CrossRef]

A. Eftekhari-Bafrooei and E. Borguet, “Effect of electric fields on the ultrafast vibrational relaxation of water at a charged solid-liquid interface as probed by vibrational sum frequency generation,” J. Phys. Chem. Lett. 2, 1353–1358 (2011).
[CrossRef]

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

X. Cai and S. Baldelli, “Surface barrier properties of self-assembled monolayers as deduced by sum frequency generation spectroscopy and electrochemistry,” J. Phys. Chem. C 115, 19178–19189 (2011).
[CrossRef]

2010 (3)

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

B. Schupbach and A. Terfort, “A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini,” Org. Biomol. Chem. 8, 3552–3562 (2010).
[CrossRef]

D. Verreault, V. Kurz, C. Howell, and P. Koelsch, “Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy,” Rev. Sci. Instrum. 81, 063111 (2010).
[CrossRef]

2007 (2)

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645–13647 (2007).
[CrossRef]

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

2004 (3)

J. Wang, Z. Paszti, M. A. Even, and Z. Chen, “Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model,” J. Phys. Chem. B 108, 3625–3632 (2004).
[CrossRef]

W. Zhou and D. M. Kolb, “Influence of an electrostatic potential at the metal/electrolyte interface on the electron binding energy of adsorbates as probed by x-ray photoelectron spectroscopy,” Surf. Sci. 573, 176–182 (2004).
[CrossRef]

W. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb, “Structure and electrochemistry of 4,4-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111),” Langmuir 20, 4590–4595 (2004).
[CrossRef]

1999 (1)

M. Byloos, H. Al-Maznai, and M. Morin, “Formation of a self-assembled monolayer via the electrospreading of physisorbed micelles of thiolates,” J. Phys. Chem. B 103, 6554–6561 (1999).
[CrossRef]

1998 (1)

D. E. Gragson and G. L. Richmond, “Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy,” J. Phys. Chem. B 102, 3847–3861 (1998).
[CrossRef]

1997 (1)

D.-F. Yang, H. Al-Maznai, and M. Morin, “Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode,” J. Phys. Chem. B 101, 1158–1166 (1997).
[CrossRef]

1992 (1)

S. Ong, X. Zhao, and K. B. Eisenthal, “Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

1991 (1)

C. A. Widrig, C. Chung, and M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes,” J. Electroanal. Chem. 310, 335–359 (1991).
[CrossRef]

1989 (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

1986 (1)

A. T. D’Agostino and W. N. Hansen, “Observation of systematic electrochemically induced binding energy shift in the XPS spectra of emersed Cs+ double layer species,” Surf. Sci. 165, 268–276 (1986).
[CrossRef]

Al-Maznai, H.

M. Byloos, H. Al-Maznai, and M. Morin, “Formation of a self-assembled monolayer via the electrospreading of physisorbed micelles of thiolates,” J. Phys. Chem. B 103, 6554–6561 (1999).
[CrossRef]

D.-F. Yang, H. Al-Maznai, and M. Morin, “Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode,” J. Phys. Chem. B 101, 1158–1166 (1997).
[CrossRef]

Baldelli, S.

X. Cai and S. Baldelli, “Surface barrier properties of self-assembled monolayers as deduced by sum frequency generation spectroscopy and electrochemistry,” J. Phys. Chem. C 115, 19178–19189 (2011).
[CrossRef]

Barth, C.

M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

Bashir, A.

M. I. Muglali, A. Bashir, A. Terfort, and M. Rohwerder, “Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers,” Phys. Chem. Chem. Phys. 13, 15530–15538(2011).
[CrossRef]

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Baunach, T.

W. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb, “Structure and electrochemistry of 4,4-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111),” Langmuir 20, 4590–4595 (2004).
[CrossRef]

Borguet, E.

A. Eftekhari-Bafrooei and E. Borguet, “Effect of electric fields on the ultrafast vibrational relaxation of water at a charged solid-liquid interface as probed by vibrational sum frequency generation,” J. Phys. Chem. Lett. 2, 1353–1358 (2011).
[CrossRef]

Byloos, M.

M. Byloos, H. Al-Maznai, and M. Morin, “Formation of a self-assembled monolayer via the electrospreading of physisorbed micelles of thiolates,” J. Phys. Chem. B 103, 6554–6561 (1999).
[CrossRef]

Cai, X.

X. Cai and S. Baldelli, “Surface barrier properties of self-assembled monolayers as deduced by sum frequency generation spectroscopy and electrochemistry,” J. Phys. Chem. C 115, 19178–19189 (2011).
[CrossRef]

Chen, F.

S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
[CrossRef]

Chen, X.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

Chen, Y.

M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

Chen, Z.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

J. Wang, Z. Paszti, M. A. Even, and Z. Chen, “Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model,” J. Phys. Chem. B 108, 3625–3632 (2004).
[CrossRef]

Chung, C.

C. A. Widrig, C. Chung, and M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes,” J. Electroanal. Chem. 310, 335–359 (1991).
[CrossRef]

Covert, P. A.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

D’Agostino, A. T.

A. T. D’Agostino and W. N. Hansen, “Observation of systematic electrochemically induced binding energy shift in the XPS spectra of emersed Cs+ double layer species,” Surf. Sci. 165, 268–276 (1986).
[CrossRef]

Dlott, D. D.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645–13647 (2007).
[CrossRef]

Eftekhari-Bafrooei, A.

A. Eftekhari-Bafrooei and E. Borguet, “Effect of electric fields on the ultrafast vibrational relaxation of water at a charged solid-liquid interface as probed by vibrational sum frequency generation,” J. Phys. Chem. Lett. 2, 1353–1358 (2011).
[CrossRef]

Eisenthal, K. B.

S. Ong, X. Zhao, and K. B. Eisenthal, “Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

Erbe, A.

M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

Even, M. A.

J. Wang, Z. Paszti, M. A. Even, and Z. Chen, “Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model,” J. Phys. Chem. B 108, 3625–3632 (2004).
[CrossRef]

Gragson, D. E.

D. E. Gragson and G. L. Richmond, “Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy,” J. Phys. Chem. B 102, 3847–3861 (1998).
[CrossRef]

Hambir, S. A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645–13647 (2007).
[CrossRef]

Hansen, W. N.

A. T. D’Agostino and W. N. Hansen, “Observation of systematic electrochemically induced binding energy shift in the XPS spectra of emersed Cs+ double layer species,” Surf. Sci. 165, 268–276 (1986).
[CrossRef]

Hore, D. K.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

Howell, C.

D. Verreault, V. Kurz, C. Howell, and P. Koelsch, “Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy,” Rev. Sci. Instrum. 81, 063111 (2010).
[CrossRef]

Ivanova, V.

W. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb, “Structure and electrochemistry of 4,4-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111),” Langmuir 20, 4590–4595 (2004).
[CrossRef]

Jena, K. C.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

Kind, M.

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Koelsch, P.

D. Verreault, V. Kurz, C. Howell, and P. Koelsch, “Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy,” Rev. Sci. Instrum. 81, 063111 (2010).
[CrossRef]

M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

Kolb, D. M.

W. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb, “Structure and electrochemistry of 4,4-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111),” Langmuir 20, 4590–4595 (2004).
[CrossRef]

W. Zhou and D. M. Kolb, “Influence of an electrostatic potential at the metal/electrolyte interface on the electron binding energy of adsorbates as probed by x-ray photoelectron spectroscopy,” Surf. Sci. 573, 176–182 (2004).
[CrossRef]

Kurz, V.

D. Verreault, V. Kurz, C. Howell, and P. Koelsch, “Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy,” Rev. Sci. Instrum. 81, 063111 (2010).
[CrossRef]

Lagutchev, A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645–13647 (2007).
[CrossRef]

Li, H.

S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
[CrossRef]

Liu, G.

S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
[CrossRef]

Liu, J.

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Morin, M.

M. Byloos, H. Al-Maznai, and M. Morin, “Formation of a self-assembled monolayer via the electrospreading of physisorbed micelles of thiolates,” J. Phys. Chem. B 103, 6554–6561 (1999).
[CrossRef]

D.-F. Yang, H. Al-Maznai, and M. Morin, “Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode,” J. Phys. Chem. B 101, 1158–1166 (1997).
[CrossRef]

Muglali, M. I.

M. I. Muglali, A. Bashir, A. Terfort, and M. Rohwerder, “Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers,” Phys. Chem. Chem. Phys. 13, 15530–15538(2011).
[CrossRef]

M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

Nefedov, A.

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Ong, S.

S. Ong, X. Zhao, and K. B. Eisenthal, “Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

Paszti, Z.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

J. Wang, Z. Paszti, M. A. Even, and Z. Chen, “Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model,” J. Phys. Chem. B 108, 3625–3632 (2004).
[CrossRef]

Porter, M. D.

C. A. Widrig, C. Chung, and M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes,” J. Electroanal. Chem. 310, 335–359 (1991).
[CrossRef]

Richmond, G. L.

D. E. Gragson and G. L. Richmond, “Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy,” J. Phys. Chem. B 102, 3847–3861 (1998).
[CrossRef]

Rohwerder, M.

M. I. Muglali, A. Bashir, A. Terfort, and M. Rohwerder, “Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers,” Phys. Chem. Chem. Phys. 13, 15530–15538(2011).
[CrossRef]

M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

Schmaier, A.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

Schrauben, J.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

Schupbach, B.

B. Schupbach and A. Terfort, “A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini,” Org. Biomol. Chem. 8, 3552–3562 (2010).
[CrossRef]

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Shekhah, O.

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

Tarabara, V.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

Terfort, A.

M. I. Muglali, A. Bashir, A. Terfort, and M. Rohwerder, “Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers,” Phys. Chem. Chem. Phys. 13, 15530–15538(2011).
[CrossRef]

B. Schupbach and A. Terfort, “A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini,” Org. Biomol. Chem. 8, 3552–3562 (2010).
[CrossRef]

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Verreault, D.

D. Verreault, V. Kurz, C. Howell, and P. Koelsch, “Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy,” Rev. Sci. Instrum. 81, 063111 (2010).
[CrossRef]

Wang, F.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

Wang, J.

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

J. Wang, Z. Paszti, M. A. Even, and Z. Chen, “Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model,” J. Phys. Chem. B 108, 3625–3632 (2004).
[CrossRef]

Wang, X.

S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
[CrossRef]

Widrig, C. A.

C. A. Widrig, C. Chung, and M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes,” J. Electroanal. Chem. 310, 335–359 (1991).
[CrossRef]

Woll, C.

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

Yang, D.-F.

D.-F. Yang, H. Al-Maznai, and M. Morin, “Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode,” J. Phys. Chem. B 101, 1158–1166 (1997).
[CrossRef]

Ye, S.

S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
[CrossRef]

Zhao, X.

S. Ong, X. Zhao, and K. B. Eisenthal, “Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

Zhou, W.

W. Zhou and D. M. Kolb, “Influence of an electrostatic potential at the metal/electrolyte interface on the electron binding energy of adsorbates as probed by x-ray photoelectron spectroscopy,” Surf. Sci. 573, 176–182 (2004).
[CrossRef]

W. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb, “Structure and electrochemistry of 4,4-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111),” Langmuir 20, 4590–4595 (2004).
[CrossRef]

Anal. Bioanal. Chem. (1)

X. Chen, J. Wang, Z. Paszti, F. Wang, J. Schrauben, V. Tarabara, A. Schmaier, and Z. Chen, “Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy,” Anal. Bioanal. Chem. 388, 65–72 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

S. Ong, X. Zhao, and K. B. Eisenthal, “Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

J. Electroanal. Chem. (1)

C. A. Widrig, C. Chung, and M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes,” J. Electroanal. Chem. 310, 335–359 (1991).
[CrossRef]

J. Phys. Chem. B (4)

D.-F. Yang, H. Al-Maznai, and M. Morin, “Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode,” J. Phys. Chem. B 101, 1158–1166 (1997).
[CrossRef]

M. Byloos, H. Al-Maznai, and M. Morin, “Formation of a self-assembled monolayer via the electrospreading of physisorbed micelles of thiolates,” J. Phys. Chem. B 103, 6554–6561 (1999).
[CrossRef]

D. E. Gragson and G. L. Richmond, “Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy,” J. Phys. Chem. B 102, 3847–3861 (1998).
[CrossRef]

J. Wang, Z. Paszti, M. A. Even, and Z. Chen, “Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model,” J. Phys. Chem. B 108, 3625–3632 (2004).
[CrossRef]

J. Phys. Chem. C (2)

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645–13647 (2007).
[CrossRef]

X. Cai and S. Baldelli, “Surface barrier properties of self-assembled monolayers as deduced by sum frequency generation spectroscopy and electrochemistry,” J. Phys. Chem. C 115, 19178–19189 (2011).
[CrossRef]

J. Phys. Chem. Lett. (2)

A. Eftekhari-Bafrooei and E. Borguet, “Effect of electric fields on the ultrafast vibrational relaxation of water at a charged solid-liquid interface as probed by vibrational sum frequency generation,” J. Phys. Chem. Lett. 2, 1353–1358 (2011).
[CrossRef]

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2, 1056–1061 (2011).
[CrossRef]

Langmuir (2)

S. Ye, G. Liu, H. Li, F. Chen, and X. Wang, “Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal,” Langmuir 28, 1374–1380 (2012).
[CrossRef]

W. Zhou, T. Baunach, V. Ivanova, and D. M. Kolb, “Structure and electrochemistry of 4,4-dithiodipyridine self-assembled monolayers in comparison with 4-mercaptopyridine self-assembled monolayers on Au(111),” Langmuir 20, 4590–4595 (2004).
[CrossRef]

Nature (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

Org. Biomol. Chem. (1)

B. Schupbach and A. Terfort, “A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini,” Org. Biomol. Chem. 8, 3552–3562 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (2)

J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, and C. Woll, “Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold,” Phys. Chem. Chem. Phys. 12, 4459–4472 (2010).
[CrossRef]

M. I. Muglali, A. Bashir, A. Terfort, and M. Rohwerder, “Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers,” Phys. Chem. Chem. Phys. 13, 15530–15538(2011).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Verreault, V. Kurz, C. Howell, and P. Koelsch, “Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy,” Rev. Sci. Instrum. 81, 063111 (2010).
[CrossRef]

Surf. Sci. (2)

A. T. D’Agostino and W. N. Hansen, “Observation of systematic electrochemically induced binding energy shift in the XPS spectra of emersed Cs+ double layer species,” Surf. Sci. 165, 268–276 (1986).
[CrossRef]

W. Zhou and D. M. Kolb, “Influence of an electrostatic potential at the metal/electrolyte interface on the electron binding energy of adsorbates as probed by x-ray photoelectron spectroscopy,” Surf. Sci. 573, 176–182 (2004).
[CrossRef]

Other (1)

M. I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, and M. Rohwerder, “Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold,” Electrochim. Acta, 10.1016/j.electacta.2012.11.116 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Structure of (4-(4-(4 pyridyl)phenyl)phenyl)methanethiol (PyPP1).

Fig. 2.
Fig. 2.

(a) Sketch of the beam path and the arrangement of the electrodes in the modified thin-layer analysis cell for SFG measurements. (b) Recorded CV for PyPP1 over 10 cycles.

Fig. 3.
Fig. 3.

SFG spectra recorded at around 1600cm1 at different delay times between IR and 800 nm beams. The vertical line at peak maximum is a guide to the eye for comparing resonant and nonresonant signals. The inset shows background suppressed SFG spectra (231 fs) in air and in 0.1 M NaOH.

Fig. 4.
Fig. 4.

SFG signals for the first ramp toward negative potentials for resonant (red, around 1600cm1) and nonresonant (blue, around 2800cm1) recordings.

Fig. 5.
Fig. 5.

Integrated intensities of resonant SFG spectra recorded through 10 CVs. The gray curve corresponds to a fit using Eq. (1); the gray dotted curve is an extension of the fitting results toward more negative potentials.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(ωSFG)χ(2)|eiϕ+Epot|χ(3)|eiγ|2,
Epot(VeVpzc)/λ,

Metrics