Abstract

We present a simple theoretical model that explains polarization switching in fiber ring lasers operating with a normal path-averaged dispersion and a typical intermediate level of birefringence. Such polarization dynamics, based on a type of polarization-domain-wall (PDW) structures, agree qualitatively well with our experimental observations. We also stress the complex and chaotic nature of the observed polarization-switching states. This is corroborated by detailed numerical simulations that predict the buildup of consecutive and transient PDW structures at the subnanosecond scale, which are not fully resolved experimentally.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [CrossRef]
  2. Q. L. Williams, J. Garcia-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects,” Phys. Rev. A 55, 2376–2386 (1997).
    [CrossRef]
  3. G. D. Van Wiggeren, and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun. 164, 107–120 (1999).
    [CrossRef]
  4. H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60, 2360–2374 (1999).
    [CrossRef]
  5. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80, 052302 (2009).
    [CrossRef]
  6. H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
    [CrossRef]
  7. H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
    [CrossRef]
  8. M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19, 96–98 (1994).
    [CrossRef]
  9. M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49, 4512–4518 (1994).
    [CrossRef]
  10. F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6 THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24, 1389–1391 (1999).
    [CrossRef]
  11. B. Crosignani, S. Piazzolla, P. Spano, and P. Di Porto, “Direct measurement of the nonlinear phase shift between the orthogonally polarized states of a single-mode fiber,” Opt. Lett. 10, 89–91 (1985).
    [CrossRef]
  12. S. Coen and T. Sylvestre, “Comment on dark pulse emission of a fiber laser,” Phys. Rev. A 82, 047801 (2010).
    [CrossRef]
  13. F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012).
    [CrossRef]

2012 (3)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[CrossRef]

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
[CrossRef]

F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012).
[CrossRef]

2010 (2)

S. Coen and T. Sylvestre, “Comment on dark pulse emission of a fiber laser,” Phys. Rev. A 82, 047801 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[CrossRef]

2009 (1)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80, 052302 (2009).
[CrossRef]

1999 (3)

G. D. Van Wiggeren, and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun. 164, 107–120 (1999).
[CrossRef]

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60, 2360–2374 (1999).
[CrossRef]

F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6 THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24, 1389–1391 (1999).
[CrossRef]

1997 (1)

Q. L. Williams, J. Garcia-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects,” Phys. Rev. A 55, 2376–2386 (1997).
[CrossRef]

1994 (2)

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19, 96–98 (1994).
[CrossRef]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49, 4512–4518 (1994).
[CrossRef]

1985 (1)

Abarbanel, H. D. I.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60, 2360–2374 (1999).
[CrossRef]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[CrossRef]

Baronio, F.

F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012).
[CrossRef]

Buhl, M.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60, 2360–2374 (1999).
[CrossRef]

Cao, W. J.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
[CrossRef]

Coen, S.

S. Coen and T. Sylvestre, “Comment on dark pulse emission of a fiber laser,” Phys. Rev. A 82, 047801 (2010).
[CrossRef]

Conforti, M.

F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012).
[CrossRef]

Crosignani, B.

Degasperis, A.

F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012).
[CrossRef]

Di Porto, P.

Dong, J. L.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
[CrossRef]

Dudley, J. M.

Garcia-Ojalvo, J.

Q. L. Williams, J. Garcia-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects,” Phys. Rev. A 55, 2376–2386 (1997).
[CrossRef]

Grelu, P.

Gutty, F.

Haelterman, M.

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19, 96–98 (1994).
[CrossRef]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49, 4512–4518 (1994).
[CrossRef]

Kennel, M. B.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60, 2360–2374 (1999).
[CrossRef]

Knize, R. J.

Lewis, C. T.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60, 2360–2374 (1999).
[CrossRef]

Millot, G.

Piazzolla, S.

Pitois, S.

Roy, R.

G. D. Van Wiggeren, and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun. 164, 107–120 (1999).
[CrossRef]

Q. L. Williams, J. Garcia-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects,” Phys. Rev. A 55, 2376–2386 (1997).
[CrossRef]

Sheppard, A. P.

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49, 4512–4518 (1994).
[CrossRef]

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19, 96–98 (1994).
[CrossRef]

Spano, P.

Sylvestre, T.

S. Coen and T. Sylvestre, “Comment on dark pulse emission of a fiber laser,” Phys. Rev. A 82, 047801 (2010).
[CrossRef]

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80, 052302 (2009).
[CrossRef]

Thomson, M. D.

Van Wiggeren, G. D.

G. D. Van Wiggeren, and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun. 164, 107–120 (1999).
[CrossRef]

Wabnitz, S.

F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012).
[CrossRef]

Wang, H. Y.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
[CrossRef]

Wang, L. Y.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
[CrossRef]

Williams, Q. L.

Q. L. Williams, J. Garcia-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects,” Phys. Rev. A 55, 2376–2386 (1997).
[CrossRef]

Wu, X.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80, 052302 (2009).
[CrossRef]

Xu, W. C.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
[CrossRef]

Zhang, H.

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80, 052302 (2009).
[CrossRef]

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80, 052302 (2009).
[CrossRef]

Laser Phys. (1)

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22, 282–285(2012).
[CrossRef]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[CrossRef]

Opt. Commun. (1)

G. D. Van Wiggeren, and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun. 164, 107–120 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (3)

S. Coen and T. Sylvestre, “Comment on dark pulse emission of a fiber laser,” Phys. Rev. A 82, 047801 (2010).
[CrossRef]

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60, 2360–2374 (1999).
[CrossRef]

Q. L. Williams, J. Garcia-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects,” Phys. Rev. A 55, 2376–2386 (1997).
[CrossRef]

Phys. Rev. B (1)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80, 052302 (2009).
[CrossRef]

Phys. Rev. E (1)

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49, 4512–4518 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Contour plot of the potential function V(u,v) for a birefringent fiber; black dots indicate its maxima. (a) Case with β=2/3 and (b) case with β=1.

Fig. 2.
Fig. 2.

Evolution with time t of the (u,v) or (r,s) components of a polarization-domain wall in a birefringent fiber.

Fig. 3.
Fig. 3.

Evolution with time t of the (u,v) or (r,s) components of a coupled dark and bright on a background vector solitary wave in a birefringent fiber.

Fig. 4.
Fig. 4.

Fiber laser experimental setup. ISO, polarization-insensitive optical isolator; OC, output coupler; EDF, erbium-doped fiber; DSF, dispersion-shifted fiber; DCF, dispersion-compensating fiber; PC, quarter- and half-wave plates; and WDM, wavelength division multiplexing.

Fig. 5.
Fig. 5.

Total intensity of the laser output at a pumping power of 1 W (a), zoomed in (b). The periodicity is 72 ns and corresponds to the laser-cavity round-trip time.

Fig. 6.
Fig. 6.

Typical dark-bright regime in the normal dispersion regime: temporal traces of the two orthogonal polarization states (a), (b) and optical spectra (c). The red-curve spectrum (left) corresponds to trace (b) and the black-curve spectrum (right) to trace (a).

Fig. 7.
Fig. 7.

Influence of polarization control: temporal traces of the two orthogonal polarization states and corresponding optical spectra for three different orientations of CP1. Dark PDW-like structures are characterized by red-curve spectra (right), and bright PDW-like structures are characterized by black-curve spectra (left).

Fig. 8.
Fig. 8.

Two examples of recorded background-free autocorrelation traces, showing small coherence peaks shorter than 10 ps.

Fig. 9.
Fig. 9.

At the first cavity round trip: numerically simulated optical spectrum and time evolution of the SOP (S3 parameter) at the exit of the EDFA.

Fig. 10.
Fig. 10.

As in Fig. 3, after N=1900 circulations in the laser.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

iAxZ+iδAxTβ222AxT2+γ(|Ax|2+23|Ay|2)Ax=0,iAyZiδAyTβ222AyT2+γ(|Ay|2+23|Ax|2)Ay=0,
iaxZβ222axT2+γ(|ax|2+23|ay|2)ax=0,iayZβ222ayT2+γ(|ay|2+23|ax|2)ay=0,
β22d2exdT2=kxex+γex3+23γexey2,β22d2eydT2=kyey+γey3+23γeyex2.
u¨=2u+2u3+43uv2,v¨=2βv+2v3+43vu2.

Metrics