Abstract

Concentration measurements are performed in argon–nitrogen and carbon monoxide–nitrogen binary gas mixtures at temperatures of 300 and 900 K at atmospheric pressure using femtosecond coherent anti-Stokes Raman scattering (fs CARS). Polarization suppression of the nonresonant background is also demonstrated for these concentration measurements. Single laser shot measurements at 1000 Hz are performed using a chirped probe pulse to map the temporal evolution of the Raman coherence of each species onto the spectrum of the CARS signal pulse. The pump and Stokes pulses have full width at half-maximum bandwidths of 320 and 135cm1, respectively and excite Raman transitions with frequencies over a range of 400cm1. Single laser shot fs CARS spectra are fit using a theoretical model to extract the concentration measurements. For measurements in argon–nitrogen or carbon monoxide–nitrogen gas mixtures, concentration measurements were performed over the range of 5%–90% nitrogen with typical measurement error being less than 2.0% in absolute concentration. The precision of the measurements was typically better than 1.5% in terms of absolute concentration. Nonresonant background suppression clearly revealed the resonant signals from each gas species, and concentration measurements were performed over a slightly reduced concentration range with comparable results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  2. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Progr. Energ Combust. Sci. 36, 280–306 (2010).
    [CrossRef]
  3. R. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett 12, 78–80 (1987).
    [CrossRef]
  4. S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
    [CrossRef]
  5. M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
    [CrossRef]
  6. A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
    [CrossRef]
  7. M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007).
    [CrossRef]
  8. K. W. Boyack and P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multi species in turbulent flames,” Proc. Combust. Inst. 23, 1893–1899 (1991).
    [CrossRef]
  9. J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
    [CrossRef]
  10. S. M. Green, P. J. Rubas, M. A. Paul, J. E. Peters, and R. P. Lucht, “Annular phase-matched dual-pump coherent anti-Stokes Raman spectroscopy system for the simultaneous detection of nitrogen and methane,” Appl. Opt. 37, 1690–1701 (1998).
    [CrossRef]
  11. D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.
  12. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
    [CrossRef]
  13. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
    [CrossRef]
  14. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
    [CrossRef]
  15. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
    [CrossRef]
  16. C. J. Kliewer, “High-spatial-resolution one-dimensional rotational coherent anti-Stokes Raman spectroscopy imaging using counterpropagating beams,” Opt. Lett. 37, 229–231 (2012).
    [CrossRef]
  17. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007).
    [CrossRef]
  18. T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry,” J. Opt. Soc. Am. B 19, 340–344 (2002).
    [CrossRef]
  19. A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
    [CrossRef]
  20. C. J. Strachan, M. Windbergs, and H. L. Offerhaus, “Pharmaceutical applications of non-linear imaging,” Int. J. Pharm. 417, 163–172 (2011).
    [CrossRef]
  21. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
    [CrossRef]
  22. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
    [CrossRef]
  23. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
    [CrossRef]
  24. A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
    [CrossRef]
  25. G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
    [CrossRef]
  26. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
    [CrossRef]
  27. S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
    [CrossRef]
  28. S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
    [CrossRef]
  29. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
    [CrossRef]
  30. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
    [CrossRef]
  31. D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley & Sons, 2002).
  32. N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications (Cambridge University, 2005).
  33. K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach (Springer-Verlag, 2005).

2012 (2)

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
[CrossRef]

C. J. Kliewer, “High-spatial-resolution one-dimensional rotational coherent anti-Stokes Raman spectroscopy imaging using counterpropagating beams,” Opt. Lett. 37, 229–231 (2012).
[CrossRef]

2011 (9)

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
[CrossRef]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

C. J. Strachan, M. Windbergs, and H. L. Offerhaus, “Pharmaceutical applications of non-linear imaging,” Int. J. Pharm. 417, 163–172 (2011).
[CrossRef]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
[CrossRef]

2010 (2)

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Progr. Energ Combust. Sci. 36, 280–306 (2010).
[CrossRef]

2009 (2)

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

2008 (3)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

2007 (2)

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007).
[CrossRef]

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007).
[CrossRef]

2004 (1)

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

2003 (1)

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

2002 (1)

2000 (1)

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[CrossRef]

1998 (1)

1991 (1)

K. W. Boyack and P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multi species in turbulent flames,” Proc. Combust. Inst. 23, 1893–1899 (1991).
[CrossRef]

1988 (1)

A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

1987 (1)

R. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett 12, 78–80 (1987).
[CrossRef]

Anderson, T. J.

A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Beaud, P.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

Belovich, V. M.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Bhuiyan, A. H.

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

Bonn, M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

Boyack, K. W.

K. W. Boyack and P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multi species in turbulent flames,” Proc. Combust. Inst. 23, 1893–1899 (1991).
[CrossRef]

Bremer, M. T.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Brüggemann, D.

D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.

Butcher, N.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Chai, N.

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

Corporan, E.

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Dantus, M.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

Day, J. P. R.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

Dobbs, G. M.

A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Domke, K. F.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

Ewart, P.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

Gerber, T.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

Gord, J. R.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
[CrossRef]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Progr. Energ Combust. Sci. 36, 280–306 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Gore, J. P.

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

Green, S. M.

Gunaratne, T.

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

Hamguchi, H. O.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

Hedman, P. O.

K. W. Boyack and P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multi species in turbulent flames,” Proc. Combust. Inst. 23, 1893–1899 (1991).
[CrossRef]

Heinze, T.

D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.

Herek, J. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
[CrossRef]

Hierold, R.

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007).
[CrossRef]

Jafarpour, A.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
[CrossRef]

Jurna, M.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
[CrossRef]

Kano, H.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Kiefer, J.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

Kinnius, P. J.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007).
[CrossRef]

Kirch, K.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

Kliewer, C. J.

Knoche, K-F.

D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.

Knopp, G.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

Kuehner, J. P.

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

Kulatilaka, W. D.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

Lampinen, J. A.

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach (Springer-Verlag, 2005).

Lang, T.

Laurendeau, N. M.

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications (Cambridge University, 2005).

Leipertz, A.

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007).
[CrossRef]

Long, D. A.

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley & Sons, 2002).

Lozovoy, V. V.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Lucht, R.

R. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett 12, 78–80 (1987).
[CrossRef]

Lucht, R. P.

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

S. M. Green, P. J. Rubas, M. A. Paul, J. E. Peters, and R. P. Lucht, “Annular phase-matched dual-pump coherent anti-Stokes Raman spectroscopy system for the simultaneous detection of nitrogen and methane,” Appl. Opt. 37, 1690–1701 (1998).
[CrossRef]

Meyer, S. E.

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

Meyer, T. R.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Miller, J. D.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
[CrossRef]

Mishima, K.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

Motzkus, M.

Naik, S. V.

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Naumov, A. N.

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[CrossRef]

Offerhaus, H. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
[CrossRef]

C. J. Strachan, M. Windbergs, and H. L. Offerhaus, “Pharmaceutical applications of non-linear imaging,” Int. J. Pharm. 417, 163–172 (2011).
[CrossRef]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Progr. Energ Combust. Sci. 36, 280–306 (2010).
[CrossRef]

Paul, M. A.

Pestov, D.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

Peters, J. E.

Price, K. V.

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach (Springer-Verlag, 2005).

Radi, P.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

Rago, G.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

Richardson, D.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

Richardson, D. R.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Roy, S.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
[CrossRef]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Progr. Energ Combust. Sci. 36, 280–306 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Rubas, P. J.

Seeger, T.

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007).
[CrossRef]

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Spitzer, H.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

Stauffer, H. U.

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
[CrossRef]

Storn, R. M.

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach (Springer-Verlag, 2005).

Strachan, C. J.

C. J. Strachan, M. Windbergs, and H. L. Offerhaus, “Pharmaceutical applications of non-linear imaging,” Int. J. Pharm. 417, 163–172 (2011).
[CrossRef]

Thariyan, M. P.

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

Tulej, M.

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

van Rhijn, A. C. W.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
[CrossRef]

Vartiainen, E. M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

Weikl, M. C.

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007).
[CrossRef]

Wies, B.

D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.

Windbergs, M.

C. J. Strachan, M. Windbergs, and H. L. Offerhaus, “Pharmaceutical applications of non-linear imaging,” Int. J. Pharm. 417, 163–172 (2011).
[CrossRef]

Wrzesinski, P. J.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19, 5163–5170 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

Xu, B.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

Zhang, X. X.

D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.

Zheltikov, A. M.

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, and G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Appl. Phys. Lett. (4)

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy for N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009).
[CrossRef]

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Combust. Flame (1)

S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combust. Flame 138, 273–284 (2004).
[CrossRef]

Int. J. Pharm. (1)

C. J. Strachan, M. Windbergs, and H. L. Offerhaus, “Pharmaceutical applications of non-linear imaging,” Int. J. Pharm. 417, 163–172 (2011).
[CrossRef]

J. Chem. Phys. (3)

J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, and R. P. Lucht, “Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide,” J. Chem. Phys. 128, 174308 (2008).
[CrossRef]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136, 111101 (2012).
[CrossRef]

R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127, 044316 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115, 7713–7725 (2011).
[CrossRef]

J. Raman Spectrosc. (5)

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42, 1859–1863 (2011).
[CrossRef]

G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, and T. Gerber, “Determination of the ortho-/para deuterium concentration ratio with femtosecond CARS,” J. Raman Spectrosc. 34, 989–993 (2003).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41, 1194–1199 (2010).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42, 393–398 (2011).
[CrossRef]

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983–988 (2007).
[CrossRef]

Meas. Sci. Technol. (1)

M. P. Thariyan, A. H. Bhuiyan, S. E. Meyer, S. V. Naik, J. P. Gore, and R. P. Lucht, “Dual-pump coherent anti-Stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility,” Meas. Sci. Technol. 22, 015301 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

R. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett 12, 78–80 (1987).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (1)

K. W. Boyack and P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multi species in turbulent flames,” Proc. Combust. Inst. 23, 1893–1899 (1991).
[CrossRef]

Prog. Energy Combust. Sci. (1)

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

Progr. Energ Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Progr. Energ Combust. Sci. 36, 280–306 (2010).
[CrossRef]

Quantum Electron. (1)

A. M. Zheltikov and A. N. Naumov, “High-resolution four-photon spectroscopy with chirped pulses,” Quantum Electron. 30, 606–610 (2000).
[CrossRef]

Other (5)

D. Brüggemann, B. Wies, X. X. Zhang, T. Heinze, and K-F. Knoche, “CARS spectroscopy for temperature and concentration measurements in a spark ignition engine,” in Combusting Flow Diagnostics, D. F. G. Durao, M. V. Heitor, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, 1992) pp. 495–511.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley & Sons, 2002).

N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications (Cambridge University, 2005).

K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach (Springer-Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Optical layout used for CPP fs CARS measurements.

Fig. 2.
Fig. 2.

Best-fit values for the ratio of resonant to nonresonant scaling factors for argon–nitrogen gas mixtures at 300 K and a probe time delay of 1.0 ps.

Fig. 3.
Fig. 3.

Experimental single laser shot CPP fs CARS spectra (symbols and curve) and best-fit theoretical spectra (curve) are shown for various argon–nitrogen gas mixtures at 300 K and a probe time delay of 1.0 ps. The experimental and measured concentrations are noted in each plot.

Fig. 4.
Fig. 4.

Concentration measurement values and statistics are reported for a range of argon–nitrogen gas mixtures at 300 K. The concentration values are obtained from fitting 200 single laser shot spectra recorded at each concentration. The probe time delay was 1.0 ps.

Fig. 5.
Fig. 5.

Experimental single-laser-shot CPP fs CARS spectra (symbols and curve) and best-fit theoretical spectra (curve) are shown for various argon–nitrogen gas mixtures at 900 K and a probe time delay of 2.0 ps. The experimental and measured concentrations are noted in each plot.

Fig. 6.
Fig. 6.

Concentration measurements for argon–nitrogen gas mixtures at 900 K.

Fig. 7.
Fig. 7.

Best-fit values for the resonant scaling factors for five carbon monoxide–nitrogen gas mixtures at 300 K are shown on a linear scale. The ratio of the resonant scaling parameters and model are shown on a log scale.

Fig. 8.
Fig. 8.

Single-laser-shot spectra (symbols and curve) and best-fit theoretical spectra (curve) are shown for six different gas mixtures at 300 K. The measured and experimental concentrations are noted in each plot.

Fig. 9.
Fig. 9.

Best-fit concentration measurement values from fitting single-laser-shot spectra recorded in carbon monoxide–nitrogen mixtures at 300 K and a probe time delay of 1.0 ps.

Fig. 10.
Fig. 10.

Single-laser-shot experimental spectra (symbols and curve) and the corresponding best-fit theoretical spectra (curve) are shown for five carbon dioxide–nitrogen mixtures at 900 K. The measured and experimental concentrations are noted in each plot.

Fig. 11.
Fig. 11.

Histogram of best-fit concentration measurement values for carbon monoxide–nitrogen gas mixtures at 900 K.

Fig. 12.
Fig. 12.

Best-fit ratios of the resonant scaling parameters obtained from fitting nonresonant background suppressed CPP fs CARS spectra in carbon monoxide–nitrogen gas mixtures at 300 K. The same model can be used for measurements performed with and without nonresonant background suppression.

Fig. 13.
Fig. 13.

Best-fit theoretical spectra (curve) and single-laser-shot experimental spectra (symbols and curve) recorded with the nonresonant background suppressed in four carbon monoxide–nitrogen gas mixtures at 300 K and 0.0 ps probe time delay. The experimental and measured concentrations are noted in each plot.

Fig. 14.
Fig. 14.

Histogram of best-fit concentration measurement values for four different carbon monoxide–nitrogen mixtures at 300 K recorded with polarization suppression of the nonresonant background.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E(ω)=[Imeasured(ω)]0.5exp[j(Aω2+Bω3)],
Pnres(t)=αEp(t)ESt(t).
Pres(t)=[tEp(t)Es(t)dt]j{βji[Δfji(dσdΩ)jicos(ωjit+ϕj)exp(Γjit)]}.
(dσdΩ)ji=v32mjπ2εo2c4ωi(ωpr+ωi)4[(aj)2+445bJ,J(γj)2],
bJ,J=J(J+1)(2J1)(2J+3).
ECARS(t)=Epr(t)[Pres(t)+Pnres(t)].
SCARS(ω)=|+ECARS(t)×exp(jωt)dt|2.
βN2α=m(xc)+b.
βCOβN2=γCOx+bCOγN2x+bN2=γCOxγN2(x100)=γCO/γN21(100/x),
βCOβN2=(a1(b/x))d+c.

Metrics