Abstract

A theoretical study of modulational instability (MI) in the semiconductor doped dispersion decreasing fiber (SD-DDF) is presented. We consider the combination of saturation of nonlinear response and the dispersion decreasing fiber (DDF). The exact dispersion relation is calculated by means of linear stability analysis. Different fiber systems are considered alongside the proposed SD-DDF for insight and to offer the cutting edge of the proposed model over the others. The two extreme physical effects considered lead to an exciting outcome, where decreasing dispersion leads to broadening the spectral width and saturation, on the other hand, suppresses the MI gain and the bandwidth. A bandwidth relation between different fiber systems is presented, and the idea can open the design of a fiber structure with desired dispersion profile by a suitable manipulation of these effects. We propose that instead of using DDF whose bandwidth is limited by the manufacturing constraints, the use of SD-DDF offers better tailoring of the bandwidth profile by suitably altering the saturation parameter. Thus we emphasize that the proposed SD-DDF will be a feature prospect for wide range of applications, especially in the context of ultrashort pulse generation using MI.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  2. A. Hasegawa and F. Tappert, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Appl. Phys. Lett. 23, 142–244 (1973).
    [CrossRef]
  3. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
    [CrossRef]
  4. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
    [CrossRef]
  5. M. J. Potasek, “Modulation instability in an extended nonlinear Schrödinger equation,” Opt. Lett. 12, 921–923 (1987).
    [CrossRef]
  6. E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989).
    [CrossRef]
  7. R. Vasantha Jayakantha Raja, K. Porsezian, and K. Nithyanandan, “Modulational instability induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
    [CrossRef]
  8. M. N. Z. Abouou, P. T. Dinda, C. M. Ngabireng, B. Kibler, and F. Smektala, “Impact of the material absorption on the modulational instability spectra of wave propagation in high-index glass fibers,” J. Opt. Soc. Am. B 28, 1518–1528 (2011).
    [CrossRef]
  9. A. Kumar, A. Labruyere, and P. T. Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003).
    [CrossRef]
  10. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991).
    [CrossRef]
  11. F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
    [CrossRef]
  12. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003).
    [CrossRef]
  13. J. E. Rothenberg, “Modulation instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
    [CrossRef]
  14. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989).
    [CrossRef]
  15. E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
    [CrossRef]
  16. P. T. Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
    [CrossRef]
  17. G. Millot, P. Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
    [CrossRef]
  18. G. Millot, E. Seve, S. Wabnitz, and J. M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15, 1266–1277 (1998).
    [CrossRef]
  19. P. T. Dinda, G. Millot, and S. Wabnitz, “Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers,” J. Opt. Soc. Am. B 15, 1433–1441 (1998).
    [CrossRef]
  20. P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006).
    [CrossRef]
  21. P. K. A. Wai, and W.-H. Cao, “Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion decreasing fiber,” J. Opt. Soc. Am. B 20, 1346–1355 (2003).
    [CrossRef]
  22. B. A. Malomed, “Ideal amplification of an ultrashort soliton in a dispersion-decreasing fiber,” Opt. Lett. 19, 341–343 (1994).
    [CrossRef]
  23. W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
    [CrossRef]
  24. R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010).
    [CrossRef]
  25. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
    [CrossRef]
  26. K. I. M. McKinnon, N. F. Smyth, and A. L. Worthy, “Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers,” J. Opt. Soc. Am. B 16, 441–447 (1999).
    [CrossRef]
  27. K.-T. Chan, and W.-H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
    [CrossRef]
  28. M. Pelusi, and H.-F. Liu, “Higher order soliton pulse compression in dispersion decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
    [CrossRef]
  29. J. Travers, J. M. Stone, A. Rulkov, B. Cumberland, A. George, S. Popov, J. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
    [CrossRef]
  30. D. Gupta, G. Kumar, and K. Thyagarajan, “Nonlinear pulse propagation in dispersion decreasing fibers,” Opt. Commun. 237, 309–317 (2004).
    [CrossRef]
  31. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824–15835 (2007).
    [CrossRef]
  32. S. Wabnitz and C. Finot, “Theory of parabolic pulse propagation in nonlinear dispersion-decreasing optical fiber amplifiers,” J. Opt. Soc. Am. B 25, 614–621 (2008).
    [CrossRef]
  33. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004).
    [CrossRef]
  34. W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
    [CrossRef]
  35. S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005).
    [CrossRef]
  36. L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990).
    [CrossRef]
  37. J. L. Coutaz and M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8, 95–98 (1991).
    [CrossRef]
  38. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995).
    [CrossRef]
  39. Y. F. Chen, K. Beckwitt, F. K. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order nonlinearities of glasses,” J. Opt. Soc. Am. B 23, 347–352 (2006).
    [CrossRef]
  40. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296–2302 (1991).
    [CrossRef]
  41. J. Herrmann, “Propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region,” J. Opt. Soc. Am. B 8, 1507–1511 (1991).
    [CrossRef]
  42. J. M. Hickmann, S. B. Cavalcanti, N. M. Borges, E. A. Gouveia, and A. S. Gouveia-Neto, “Modulational instability in semiconductor-doped glass fibers with saturable nonlinearity,” Opt. Lett. 18, 182–184 (1993).
    [CrossRef]
  43. P. T. Dinda and K. Porsezian, “Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity,” J. Opt. Soc. Am. B 27, 1143–1152 (2010).
    [CrossRef]
  44. N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995).
    [CrossRef]

2011 (1)

2010 (3)

R. Vasantha Jayakantha Raja, K. Porsezian, and K. Nithyanandan, “Modulational instability induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[CrossRef]

R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010).
[CrossRef]

P. T. Dinda and K. Porsezian, “Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity,” J. Opt. Soc. Am. B 27, 1143–1152 (2010).
[CrossRef]

2009 (1)

W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006).
[CrossRef]

Y. F. Chen, K. Beckwitt, F. K. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order nonlinearities of glasses,” J. Opt. Soc. Am. B 23, 347–352 (2006).
[CrossRef]

2005 (1)

S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005).
[CrossRef]

2004 (2)

T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004).
[CrossRef]

D. Gupta, G. Kumar, and K. Thyagarajan, “Nonlinear pulse propagation in dispersion decreasing fibers,” Opt. Commun. 237, 309–317 (2004).
[CrossRef]

2003 (3)

P. K. A. Wai, and W.-H. Cao, “Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion decreasing fiber,” J. Opt. Soc. Am. B 20, 1346–1355 (2003).
[CrossRef]

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003).
[CrossRef]

A. Kumar, A. Labruyere, and P. T. Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003).
[CrossRef]

2001 (2)

G. Millot, P. Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
[CrossRef]

2000 (1)

K.-T. Chan, and W.-H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

1999 (1)

1998 (2)

1997 (1)

M. Pelusi, and H.-F. Liu, “Higher order soliton pulse compression in dispersion decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

1996 (2)

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

P. T. Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef]

1995 (2)

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995).
[CrossRef]

N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995).
[CrossRef]

1994 (2)

F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
[CrossRef]

B. A. Malomed, “Ideal amplification of an ultrashort soliton in a dispersion-decreasing fiber,” Opt. Lett. 19, 341–343 (1994).
[CrossRef]

1993 (2)

1991 (4)

1990 (2)

J. E. Rothenberg, “Modulation instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef]

L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990).
[CrossRef]

1989 (2)

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989).
[CrossRef]

E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989).
[CrossRef]

1987 (1)

1986 (1)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef]

1984 (1)

1973 (1)

A. Hasegawa and F. Tappert, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Appl. Phys. Lett. 23, 142–244 (1973).
[CrossRef]

Abdullaev, F. K.

F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
[CrossRef]

Abouou, M. N. Z.

Acioli, L.

L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990).
[CrossRef]

Aggarwal, I. D.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Agrawal, G. P.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989).
[CrossRef]

Aitken, B. G.

Alfano, R. R.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989).
[CrossRef]

Angelis, C. D.

N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995).
[CrossRef]

Araujo, C. B. D.

L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990).
[CrossRef]

Baldeck, P. L.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989).
[CrossRef]

Barviau, B.

Beckwitt, K.

Bilbault, J. M.

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

Bischoff, S.

F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
[CrossRef]

Borges, N. M.

Borrelli, N. F.

Cai, K.-J.

W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
[CrossRef]

Cao, W.-H.

P. K. A. Wai, and W.-H. Cao, “Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion decreasing fiber,” J. Opt. Soc. Am. B 20, 1346–1355 (2003).
[CrossRef]

K.-T. Chan, and W.-H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

Cavalcanti, S. B.

J. M. Hickmann, S. B. Cavalcanti, N. M. Borges, E. A. Gouveia, and A. S. Gouveia-Neto, “Modulational instability in semiconductor-doped glass fibers with saturable nonlinearity,” Opt. Lett. 18, 182–184 (1993).
[CrossRef]

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991).
[CrossRef]

Chan, K.-T.

K.-T. Chan, and W.-H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

Chen, W. C.

W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
[CrossRef]

Chen, Y. F.

Chernikov, S. V.

Christiansen, P. L.

F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
[CrossRef]

Coutaz, J. L.

Cressoni, J. C.

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991).
[CrossRef]

Cumberland, B.

da Cruz, H. R.

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991).
[CrossRef]

Dalt, N. D.

N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995).
[CrossRef]

Darmanyan, S. A.

F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
[CrossRef]

Dianov, E. M.

Dinda, P.

G. Millot, P. Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

Dinda, P. T.

Finot, C.

Gatz, S.

George, A.

Gomes, A.

L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990).
[CrossRef]

Gouveia, E. A.

Gouveia-Neto, A. S.

J. M. Hickmann, S. B. Cavalcanti, N. M. Borges, E. A. Gouveia, and A. S. Gouveia-Neto, “Modulational instability in semiconductor-doped glass fibers with saturable nonlinearity,” Opt. Lett. 18, 182–184 (1993).
[CrossRef]

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991).
[CrossRef]

Greer, E. J.

E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989).
[CrossRef]

Gupta, D.

D. Gupta, G. Kumar, and K. Thyagarajan, “Nonlinear pulse propagation in dispersion decreasing fibers,” Opt. Commun. 237, 309–317 (2004).
[CrossRef]

Guryanov, A.

Haelterman, J. M.

Haelterman, M.

P. T. Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef]

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef]

A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
[CrossRef]

A. Hasegawa and F. Tappert, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Appl. Phys. Lett. 23, 142–244 (1973).
[CrossRef]

Herrmann, J.

Hickmann, J.

L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990).
[CrossRef]

Hickmann, J. M.

Hirooka, T.

Kalithasan, B.

P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006).
[CrossRef]

Kang, I.

Kibler, B.

Knight, J.

Krauss, T. D.

Kull, M.

Kumar, A.

A. Kumar, A. Labruyere, and P. T. Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003).
[CrossRef]

Kumar, G.

D. Gupta, G. Kumar, and K. Thyagarajan, “Nonlinear pulse propagation in dispersion decreasing fibers,” Opt. Commun. 237, 309–317 (2004).
[CrossRef]

Labruyere, A.

A. Kumar, A. Labruyere, and P. T. Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003).
[CrossRef]

Liu, H.-F.

M. Pelusi, and H.-F. Liu, “Higher order soliton pulse compression in dispersion decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

Liu, S.-H

W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
[CrossRef]

Liu, W.-J.

W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
[CrossRef]

Lu, F.

S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005).
[CrossRef]

Luo, A.-P.

W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
[CrossRef]

Malomed, B. A.

McKinnon, K. I. M.

Millot, G.

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824–15835 (2007).
[CrossRef]

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003).
[CrossRef]

G. Millot, P. Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

P. T. Dinda, G. Millot, and S. Wabnitz, “Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers,” J. Opt. Soc. Am. B 15, 1433–1441 (1998).
[CrossRef]

G. Millot, E. Seve, S. Wabnitz, and J. M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15, 1266–1277 (1998).
[CrossRef]

P. T. Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef]

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

Nakazawa, M.

Nakkeeran, K.

R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010).
[CrossRef]

Nalesso, G.

N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995).
[CrossRef]

Ngabireng, C.

P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006).
[CrossRef]

Ngabireng, C. M.

Nithyanandan, K.

R. Vasantha Jayakantha Raja, K. Porsezian, and K. Nithyanandan, “Modulational instability induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[CrossRef]

Patrick, D. M.

E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989).
[CrossRef]

Payne, D. N.

Pelusi, M.

M. Pelusi, and H.-F. Liu, “Higher order soliton pulse compression in dispersion decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

Pitois, S.

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003).
[CrossRef]

Popov, S.

Porsezian, K.

P. T. Dinda and K. Porsezian, “Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity,” J. Opt. Soc. Am. B 27, 1143–1152 (2010).
[CrossRef]

R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010).
[CrossRef]

R. Vasantha Jayakantha Raja, K. Porsezian, and K. Nithyanandan, “Modulational instability induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[CrossRef]

P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006).
[CrossRef]

Potasek, M. J.

Remoissenet, M.

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

Richardson, D. J.

Rothenberg, J. E.

J. E. Rothenberg, “Modulation instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef]

Rulkov, A.

Sanghera, J. S.

Santagiustina, M.

N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995).
[CrossRef]

Senthilnathan, K.

R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010).
[CrossRef]

Seve, E.

G. Millot, P. Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

G. Millot, E. Seve, S. Wabnitz, and J. M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15, 1266–1277 (1998).
[CrossRef]

P. T. Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
[CrossRef]

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

Smektala, F.

Smyth, N. F.

Sorensen, M. P.

F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
[CrossRef]

Stone, J. M.

Sysoliatin, A.

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef]

Tappert, F.

A. Hasegawa and F. Tappert, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Appl. Phys. Lett. 23, 142–244 (1973).
[CrossRef]

Taylor, J. R.

J. Travers, J. M. Stone, A. Rulkov, B. Cumberland, A. George, S. Popov, J. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
[CrossRef]

E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989).
[CrossRef]

Thyagarajan, K.

D. Gupta, G. Kumar, and K. Thyagarajan, “Nonlinear pulse propagation in dispersion decreasing fibers,” Opt. Commun. 237, 309–317 (2004).
[CrossRef]

Tian, B.

W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
[CrossRef]

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef]

Travers, J.

Vasantha Jayakantha Raja, R.

R. Vasantha Jayakantha Raja, K. Porsezian, and K. Nithyanandan, “Modulational instability induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[CrossRef]

R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010).
[CrossRef]

Wabnitz, S.

Wai, P. K. A.

Wang, J.

S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005).
[CrossRef]

Wigley, P. G. J.

E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989).
[CrossRef]

Wise, F. K.

Wise, F. W.

Worthy, A. L.

Xu, T.

W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
[CrossRef]

Xu, W.

S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005).
[CrossRef]

Xu, W.-C.

W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
[CrossRef]

Zhang, H.

W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
[CrossRef]

Zhang, S.

S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005).
[CrossRef]

Zhang, S.-M.

W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

A. Hasegawa and F. Tappert, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Appl. Phys. Lett. 23, 142–244 (1973).
[CrossRef]

L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990).
[CrossRef]

Commun. Theor. Phys. (1)

W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009).
[CrossRef]

Electron. Lett. (1)

E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010).
[CrossRef]

M. Pelusi, and H.-F. Liu, “Higher order soliton pulse compression in dispersion decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

J. Opt. Soc. Am. B (12)

K. I. M. McKinnon, N. F. Smyth, and A. L. Worthy, “Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers,” J. Opt. Soc. Am. B 16, 441–447 (1999).
[CrossRef]

P. K. A. Wai, and W.-H. Cao, “Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion decreasing fiber,” J. Opt. Soc. Am. B 20, 1346–1355 (2003).
[CrossRef]

J. L. Coutaz and M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8, 95–98 (1991).
[CrossRef]

I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995).
[CrossRef]

Y. F. Chen, K. Beckwitt, F. K. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order nonlinearities of glasses,” J. Opt. Soc. Am. B 23, 347–352 (2006).
[CrossRef]

S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296–2302 (1991).
[CrossRef]

J. Herrmann, “Propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region,” J. Opt. Soc. Am. B 8, 1507–1511 (1991).
[CrossRef]

S. Wabnitz and C. Finot, “Theory of parabolic pulse propagation in nonlinear dispersion-decreasing optical fiber amplifiers,” J. Opt. Soc. Am. B 25, 614–621 (2008).
[CrossRef]

M. N. Z. Abouou, P. T. Dinda, C. M. Ngabireng, B. Kibler, and F. Smektala, “Impact of the material absorption on the modulational instability spectra of wave propagation in high-index glass fibers,” J. Opt. Soc. Am. B 28, 1518–1528 (2011).
[CrossRef]

G. Millot, E. Seve, S. Wabnitz, and J. M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15, 1266–1277 (1998).
[CrossRef]

P. T. Dinda, G. Millot, and S. Wabnitz, “Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers,” J. Opt. Soc. Am. B 15, 1433–1441 (1998).
[CrossRef]

P. T. Dinda and K. Porsezian, “Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity,” J. Opt. Soc. Am. B 27, 1143–1152 (2010).
[CrossRef]

Opt. Commun. (8)

N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995).
[CrossRef]

W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001).
[CrossRef]

P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006).
[CrossRef]

F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
[CrossRef]

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003).
[CrossRef]

A. Kumar, A. Labruyere, and P. T. Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003).
[CrossRef]

D. Gupta, G. Kumar, and K. Thyagarajan, “Nonlinear pulse propagation in dispersion decreasing fibers,” Opt. Commun. 237, 309–317 (2004).
[CrossRef]

K.-T. Chan, and W.-H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000).
[CrossRef]

Opt. Express (2)

Opt. Fiber Tech. (1)

S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005).
[CrossRef]

Opt. Fiber Technol. (1)

G. Millot, P. Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (5)

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991).
[CrossRef]

R. Vasantha Jayakantha Raja, K. Porsezian, and K. Nithyanandan, “Modulational instability induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[CrossRef]

J. E. Rothenberg, “Modulation instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[CrossRef]

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989).
[CrossRef]

E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
[CrossRef]

Other (1)

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

MI gain spectra for different powers in CF.

Fig. 2.
Fig. 2.

Contour map of variation of MI gain in CF with power.

Fig. 3.
Fig. 3.

MI gain spectra at P0=5W for different propagation distances of DDF. Curves z(a=1;b=5;c=10)km.

Fig. 4.
Fig. 4.

Contour map portrays the variation of MI gain as a function of distances in DDF for the same parameters.

Fig. 5.
Fig. 5.

MI gain spectra for different dispersion growth rate of DDF. Curves μ(a=0.1;b=0.3;c=0.5)dB/km.

Fig. 6.
Fig. 6.

Illustration of variation of MI gain as a function of μ in DDF (parameters are the same).

Fig. 7.
Fig. 7.

MI gain spectra for different values of saturation parameter Γ. Curves Γ(a=0;b=0.05;c=1)W1.

Fig. 8.
Fig. 8.

Contour map shows the variation in MI spectrum in SDF as a function of Γ.

Fig. 9.
Fig. 9.

MI gain spectra at P0=2W for different Γ and μ. Curve a (Γ=0.1 and μ=0.4); curve b (Γ=0.1 and μ=0.6); curve c (Γ=1 and μ=0.4); curve d (Γ=1 and μ=0.6).

Fig. 10.
Fig. 10.

Contour map illustrates the MI spectrum in SD-DDF as a function of Γ for μ=0.4dB/km (inner curve) and μ=0.5dB/km (outer curve).

Fig. 11.
Fig. 11.

Three-dimensional (3D) view of the variation of MI gain with Γ for μ=0.4, 0.6dB/km. The inner graph corresponds to μ=0.4, and the outer one is for μ=0.6.

Fig. 12.
Fig. 12.

Variation of MI with μ in 3D for two values of Γ=0.1, 1W1. The outer graph corresponds to Γ=0.1, and the inner is for Γ=1.

Fig. 13.
Fig. 13.

Variation of MI bandwidth with μ for various values of Γ. Curve Γ(a=0;b=0.5;c=1)W1.

Fig. 14.
Fig. 14.

Variation of MI bandwidth with Γ for different values of μ. Curve μ(a=0;b=0.2;c=0.4)dB/km.

Fig. 15.
Fig. 15.

MI bandwidth as a function of propagation distance for Γ=0.1W1 and μ(a=0;b=0.2;c=0.4)dB/km.

Fig. 16.
Fig. 16.

Variation of MI bandwidth as a function of propagation distance for 0.4dB/km and Γ(a=0.1;b=0.2;c=0.3)W1.

Fig. 17.
Fig. 17.

Direct numerical simulation of MI gain G(Ω,z) in different fiber system using SSFM. The fiber parameters can take values as follows: β=0.02ps2/m, γ=2W1m1, μ=0.001dB/m, P=2W, and Γ=0.33W1.

Fig. 18.
Fig. 18.

MI gain spectra for different fiber systems using LSA at a distance of z=10km for an input power P0=5W (the values of the fiber parameter are the same as declared in Section 2). Curve (a → CF, b → DDF, c → SDF, d → SD-DDF).

Fig. 19.
Fig. 19.

Evolution of soliton in different fiber system (fiber parameters are the same as in Fig. 17).

Fig. 20.
Fig. 20.

Illustration of MI in SD-DDF. The fiber parameters are the same as declared in Section 2.

Tables (2)

Tables Icon

Table 1. Ωmax and Gmax for Different Fiber Systems

Tables Icon

Table 2. Summary of SD-DDFa

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

Uz+β1Ut+iβ222Ut2β363Ut3+α2U=iγf(Γ|U|2)ΓU,
τ=tβ1z,ξ=1α[1exp(αz)],A=exp(α2z)U.
Aξ+iβ2exp(αz)22Aτ2β3exp(αz)63Aτ3=iγ|A|21+Γ˜|A|2A,
As=P0exp[iϕ(ξ)],
ϕ(ξ)=γP0ξ1+Γ˜P0.
A(ξ,τ)=(P0+a(ξ,t))exp(iϕ(ξ)),
aξ+iβ22exp(αz)2aτ2β36exp(αz)3aτ3=iγP0(1+Γ˜P0)2(a+a*).
a(ξ,τ)=Uexp[i(KξΩt)]+Vexp[i(KξΩt)],
[K+D(Ω)+γ˜P0γ˜P0γ˜P0K+E(Ω)+γ˜P0]=0,
γ˜γ(1+Γ˜P0)2,
D(Ω)β2exp(αz)Ω22+β3exp(αz)Ω36,
E(Ω)β2exp(αz)Ω22β3exp(αz)Ω36.
K=16β3exp(αz)Ω3±12|β2|exp(αz)Ω[Ω2+sgn(β2)4γ˜P0|β2|exp(αz)]1/2.
G(Ω)=12|β2|exp(μz)exp(αz)Ω[ΩC2Ω2]1/2,
ΩC=[4γP0exp(μα)z|β2|(1+Γ˜P0)2]1/2.
GCF(Ω)=12|β2|exp(αz)Ω[ΩCF2Ω2]1/2,
ΩCF=[4γP0|β2|exp(αz)]1/2.
GDDF(Ω)=12|β2|exp(μz)exp(αz)Ω[ΩDDF2Ω2]1/2,
ΩDDF=[4γP0exp(μz)|β2|exp(αz)]1/2.
GSDF(Ω)=12|β2|exp(αz)Ω[ΩSNL2Ω2]1/2,
ΩSDF=[4γP0|β2|exp(αz)(1+Γ˜P0)2]1/2.
G(Ω)=12|β2|exp(μz)exp(αz)Ω[ΩC2Ω2]1/2,
ΩC=[4γP0exp(μα)z|β2|(1+Γ˜P0)2].
ΔωDDFΔωCF=exp(μz2)exp(αz2),
ΔωSDFΔωCF=[exp(αz)(1+Γ˜P0)2]1/2,
ΔωSD-DDFΔωCF=exp(μz2)exp(αz2)[(1+Γ˜P0)2]1/2.

Metrics