Abstract

Thin dielectric layers inside hollow metallic waveguides are used to improve the waveguide transmission characteristics as the dominant waveguide mode changes into the hybrid HE11 mode. We investigate the effect of 1 μm thick silver iodide (AgI) coatings on the fundamental modes in cylindrical waveguides at terahertz (THz) frequencies, in the regime of the dielectric layer being thinner than the optimal thickness hopt(2THz)20μm. In the region of 1–3.2 THz, the lowest-order modes are similar in profile to the TE11 and TM11 modes, as determined by the time-resolved near-field measurements and verified numerically. Higher-order modes are detected experimentally as mode mixtures due to the multimode propagation. Numerical electromagnetic modeling is applied to resolve the mode structure ambiguity, allowing us to correlate experimentally detected patterns with a superposition of the TM11 and the higher-order mode, TE12. Mode profiles determined here indicate that in the regime of ultrathin dielectric (h0.1λeff), the dielectric layer does not transform the dominant mode into the low-loss HE11 mode. Experimental mode patterns similar to the HE11 and the TE01 modes nevertheless can be formed due to mode beating. The results indicate that the Ag/AgI waveguides can be used for guiding THz waves in the TE01 mode or the TE12 mode with high discrimination against other modes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
    [CrossRef]
  2. E. A. J. Marcatilli and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  3. J. W. Carlin and P. D’Agostino, “Normal modes in overmoded dielectric-lined circular waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).
  4. J. W. Carlin and A. Maione, “Experimental verification of low-loss TM modes in dielectric-lined waveguide,” Bell Syst. Tech. J. 52, 487–496 (1973).
  5. N. Marcuvitz, Waveguide Handbook, ser. Electromagnetic Waves Series (IEE, 1986).
  6. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas (IEE, 1984).
  7. P. Bhartia and I. J. Bahl, Millimeter Wave Engineering and Applications (Wiley, 1984).
  8. J. P. Crenn, “A study of waveguides for far infrared interferometers measuring electron density of Tokamak plasmas,” IEEE Trans. Microwave Theory Tech. 27, 573–577 (1979).
    [CrossRef]
  9. J. L. Doane, “Propagation and mode coupling in corrugated and smooth-wall circular waveguides,” in Infrared and Millimeter Waves, K. J. Button, ed., vol. 13 (Academic, 1985), pp. 123–170.
  10. M. Miyagi, K. Harada, and S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. 32, 513–521 (1984).
    [CrossRef]
  11. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
    [CrossRef]
  12. M. Thumm, A. Jacobs, and M. Sorolla Ayza, “Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides,” IEEE Trans. Microwave Theory Tech. 39, 301–309 (1991).
    [CrossRef]
  13. B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).
  14. J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).
  15. M. Miyagi, and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
    [CrossRef]
  16. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  17. Y. Kato, and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microwave Theory Tech. 40, 679–685 (1992).
    [CrossRef]
  18. Y. Kato, and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microwave Theory Tech. 42, 2336–2342 (1994).
    [CrossRef]
  19. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [CrossRef]
  20. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  21. E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
    [CrossRef]
  22. M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
    [CrossRef]
  23. K. Iwai, A. Hongo, H. Takaku, M. Miyagi, J.-i. Ishiyama, X.-X. Wu, Y.-W. Shi, and Y. Matsuura, “Fabrication and transmission characteristics of infrared hollow fiber based on silver-clad stainless steel pipes,” Appl. Opt. 48, 6207–6212 (2009).
    [CrossRef]
  24. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
    [CrossRef]
  25. U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
    [CrossRef]
  26. M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
    [CrossRef]
  27. M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
    [CrossRef]
  28. O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
    [CrossRef]
  29. O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
    [CrossRef]
  30. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009).
    [CrossRef]
  31. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
    [CrossRef]
  32. C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
    [CrossRef]
  33. C. Dragone, “Attenuation and radiation characteristics of the HE11 mode,” IEEE Trans. Microwave Theory Tech. 28, 704–710 (1980).
    [CrossRef]
  34. C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular waveguides,” IEEE Trans. Microwave Theory Tech. 33, 271–274 (1985).
  35. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
    [CrossRef]

2012 (2)

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

2011 (4)

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
[CrossRef]

E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (2)

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

2007 (1)

2001 (1)

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

2000 (2)

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

1999 (1)

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

1994 (1)

Y. Kato, and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microwave Theory Tech. 42, 2336–2342 (1994).
[CrossRef]

1992 (2)

Y. Kato, and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microwave Theory Tech. 40, 679–685 (1992).
[CrossRef]

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

1991 (1)

M. Thumm, A. Jacobs, and M. Sorolla Ayza, “Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides,” IEEE Trans. Microwave Theory Tech. 39, 301–309 (1991).
[CrossRef]

1985 (1)

C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular waveguides,” IEEE Trans. Microwave Theory Tech. 33, 271–274 (1985).

1984 (2)

M. Miyagi, K. Harada, and S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. 32, 513–521 (1984).
[CrossRef]

M. Miyagi, and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

1980 (1)

C. Dragone, “Attenuation and radiation characteristics of the HE11 mode,” IEEE Trans. Microwave Theory Tech. 28, 704–710 (1980).
[CrossRef]

1979 (1)

J. P. Crenn, “A study of waveguides for far infrared interferometers measuring electron density of Tokamak plasmas,” IEEE Trans. Microwave Theory Tech. 27, 573–577 (1979).
[CrossRef]

1973 (2)

J. W. Carlin and P. D’Agostino, “Normal modes in overmoded dielectric-lined circular waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

J. W. Carlin and A. Maione, “Experimental verification of low-loss TM modes in dielectric-lined waveguide,” Bell Syst. Tech. J. 52, 487–496 (1973).

1964 (1)

E. A. J. Marcatilli and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Alaluf, M.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

Alberti, S.

E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
[CrossRef]

Aníbal Fernández, F.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
[CrossRef]

Ansermet, J.-P.

E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
[CrossRef]

Bahl, I. J.

P. Bhartia and I. J. Bahl, Millimeter Wave Engineering and Applications (Wiley, 1984).

Beere, H. E.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

Beltram, F.

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Bhartia, P.

P. Bhartia and I. J. Bahl, Millimeter Wave Engineering and Applications (Wiley, 1984).

Bledt, C. M.

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

Bowden, B.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

Brener, I.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Carlin, J. W.

J. W. Carlin and A. Maione, “Experimental verification of low-loss TM modes in dielectric-lined waveguide,” Bell Syst. Tech. J. 52, 487–496 (1973).

J. W. Carlin and P. D’Agostino, “Normal modes in overmoded dielectric-lined circular waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

Chuang, S. L.

C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular waveguides,” IEEE Trans. Microwave Theory Tech. 33, 271–274 (1985).

Clarricoats, P. J. B.

P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas (IEE, 1984).

Crenn, J. P.

J. P. Crenn, “A study of waveguides for far infrared interferometers measuring electron density of Tokamak plasmas,” IEEE Trans. Microwave Theory Tech. 27, 573–577 (1979).
[CrossRef]

Croitoru, N.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

D’Agostino, P.

J. W. Carlin and P. D’Agostino, “Normal modes in overmoded dielectric-lined circular waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

Dahan, R.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

de Cumis, U. S.

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

de Rijk, E.

E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
[CrossRef]

Del Río, C.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Doane, J. L.

J. L. Doane, “Propagation and mode coupling in corrugated and smooth-wall circular waveguides,” in Infrared and Millimeter Waves, K. J. Button, ed., vol. 13 (Academic, 1985), pp. 123–170.

Dragone, C.

C. Dragone, “Attenuation and radiation characteristics of the HE11 mode,” IEEE Trans. Microwave Theory Tech. 28, 704–710 (1980).
[CrossRef]

Dror, J.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

Federici, J.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Fernández, A.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Gallot, G.

Gonzalo, R.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Grischkowsky, D.

Harada, K.

M. Miyagi, K. Harada, and S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. 32, 513–521 (1984).
[CrossRef]

Harel, R.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Harrington, J. A.

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
[CrossRef]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
[CrossRef]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

Hogge, J.-P.

E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
[CrossRef]

Hongo, A.

Hsu, J. W. P.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

Ishiyama, J.-i.

Iwai, K.

Jacobs, A.

M. Thumm, A. Jacobs, and M. Sorolla Ayza, “Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides,” IEEE Trans. Microwave Theory Tech. 39, 301–309 (1991).
[CrossRef]

James, R.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
[CrossRef]

Jamison, S. P.

Kato, Y.

Y. Kato, and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microwave Theory Tech. 42, 2336–2342 (1994).
[CrossRef]

Y. Kato, and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microwave Theory Tech. 40, 679–685 (1992).
[CrossRef]

Katsenelenbaum, B. Z.

B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).

Kawakami, S.

M. Miyagi, K. Harada, and S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. 32, 513–521 (1984).
[CrossRef]

M. Miyagi, and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

Kriesel, J. M.

Kumar, M.

Lee, C. S.

C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular waveguides,” IEEE Trans. Microwave Theory Tech. 33, 271–274 (1985).

Lee, M.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

Lee, S. W.

C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular waveguides,” IEEE Trans. Microwave Theory Tech. 33, 271–274 (1985).

Likin, K.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Macor, A.

E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
[CrossRef]

Maione, A.

J. W. Carlin and A. Maione, “Experimental verification of low-loss TM modes in dielectric-lined waveguide,” Bell Syst. Tech. J. 52, 487–496 (1973).

Marcatilli, E. A. J.

E. A. J. Marcatilli and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook, ser. Electromagnetic Waves Series (IEE, 1986).

Mark, P. R.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009).
[CrossRef]

Martí Canales, J.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Martín, R.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Matsuura, Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
[CrossRef]

McGowan, R. W.

Mercader del Rio, L.

B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).

Mitrofanov, O.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
[CrossRef]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Miyagi, M.

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
[CrossRef]

K. Iwai, A. Hongo, H. Takaku, M. Miyagi, J.-i. Ishiyama, X.-X. Wu, Y.-W. Shi, and Y. Matsuura, “Fabrication and transmission characteristics of infrared hollow fiber based on silver-clad stainless steel pipes,” Appl. Opt. 48, 6207–6212 (2009).
[CrossRef]

Y. Kato, and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microwave Theory Tech. 42, 2336–2342 (1994).
[CrossRef]

Y. Kato, and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microwave Theory Tech. 40, 679–685 (1992).
[CrossRef]

M. Miyagi, and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

M. Miyagi, K. Harada, and S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. 32, 513–521 (1984).
[CrossRef]

Olver, A. D.

P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas (IEE, 1984).

Pereyaslavets, M.

B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).

Pfeiffer, L. N.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Ritchie, D. A.

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatilli and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Shi, Y.-W.

Sorolla, M.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Sorolla Ayza, M.

M. Thumm, A. Jacobs, and M. Sorolla Ayza, “Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides,” IEEE Trans. Microwave Theory Tech. 39, 301–309 (1991).
[CrossRef]

B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).

Takaku, H.

Takeda, E.

Tan, T.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009).
[CrossRef]

Tang, X.-L.

Teniente, J.

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

Thumm, M.

M. Thumm, A. Jacobs, and M. Sorolla Ayza, “Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides,” IEEE Trans. Microwave Theory Tech. 39, 301–309 (1991).
[CrossRef]

B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).

Tredicucci, A.

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

Vitiello, M. S.

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

West, K. W.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Wu, X.-X.

Wynn, J. D.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Xu, J.-H.

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Bell Syst. Tech. J. (3)

E. A. J. Marcatilli and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

J. W. Carlin and P. D’Agostino, “Normal modes in overmoded dielectric-lined circular waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

J. W. Carlin and A. Maione, “Experimental verification of low-loss TM modes in dielectric-lined waveguide,” Bell Syst. Tech. J. 52, 487–496 (1973).

IEEE J. Sel. Top. Quantum Electron. (1)

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (7)

Y. Kato, and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microwave Theory Tech. 40, 679–685 (1992).
[CrossRef]

Y. Kato, and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microwave Theory Tech. 42, 2336–2342 (1994).
[CrossRef]

M. Thumm, A. Jacobs, and M. Sorolla Ayza, “Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides,” IEEE Trans. Microwave Theory Tech. 39, 301–309 (1991).
[CrossRef]

J. P. Crenn, “A study of waveguides for far infrared interferometers measuring electron density of Tokamak plasmas,” IEEE Trans. Microwave Theory Tech. 27, 573–577 (1979).
[CrossRef]

M. Miyagi, K. Harada, and S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. 32, 513–521 (1984).
[CrossRef]

C. Dragone, “Attenuation and radiation characteristics of the HE11 mode,” IEEE Trans. Microwave Theory Tech. 28, 704–710 (1980).
[CrossRef]

C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular waveguides,” IEEE Trans. Microwave Theory Tech. 33, 271–274 (1985).

IEEE Trans. THz Sci. Tech. (1)

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011).
[CrossRef]

J. Appl. Phys. (2)

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

J. Infrared Milli. THz Waves (1)

U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012).
[CrossRef]

J. Infrared Millimeter Waves (1)

J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).

J. Lightwave Technol. (1)

M. Miyagi, and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011).
[CrossRef]

Other (6)

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).

J. L. Doane, “Propagation and mode coupling in corrugated and smooth-wall circular waveguides,” in Infrared and Millimeter Waves, K. J. Button, ed., vol. 13 (Academic, 1985), pp. 123–170.

N. Marcuvitz, Waveguide Handbook, ser. Electromagnetic Waves Series (IEE, 1986).

P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas (IEE, 1984).

P. Bhartia and I. J. Bahl, Millimeter Wave Engineering and Applications (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram (top) and picture (bottom) of the time-domain experimental setup. The waveguide can be seen in the center of the picture, whereas the subwavelength aperture near-field probe is on the right-hand side.

Fig. 2.
Fig. 2.

Numerical results for the uncoated (left) and AgI-coated (right) hollow cylindrical metallic waveguide (1 mm diameter). (a) Attenuation coefficient of the modes observed in the experiments: TE11 (black curve), TM11 (red curve), and TE12 (blue curve) from the lowest to the highest cutoff frequency, respectively. (b) Electric-field lines E(x,y) and Ex(x,y) color map of the aforementioned modes at 2 THz. From top to bottom: TE11, TM11, and TE12. The circle in the field-vector diagram represents the dielectric coating. The white and the black dashed curves show the contour of equal intensity for the uncoated and AgI-coated waveguide, respectively. To underline the change in ellipticity of the TE11 mode, the contour line for the uncoated is also included on the color map for the AgI-coated waveguide.

Fig. 3.
Fig. 3.

(a) THz TDS spectra measured at the output of the AgI-coated waveguide (top left). The narrow absorption lines are due to the water vapor inside the waveguides. (b) Numerically computed modal group time delays for the uncoated, dashed-dot curves, and AgI-coated waveguide, solid curves, (top right). The yellow region, i.e., 1.5–2.5 THz, highlights the frequency range with maximum energy. Schematic diagrams of the experimental linear scans and the corresponding xt- and yt-maps for the uncoated (c), (d) and AgI-coated (e), (f) waveguide samples. The vertical green dashed line crossing panels (c)–(f) at Δt=1ps is shown for reference.

Fig. 4.
Fig. 4.

Experimental time-resolved normalized Ex(x,y) profiles for the Ag-only (left panels) and AgI/Ag (right panels) waveguides for the time-delay: Δt=1.5ps, 4.8 ps, and 7.5 ps (a),(b),(c); and a mixture of numerically computed TM11 and TE12 modes at the frequency that makes them arrive at 7.5ps (d).

Fig. 5.
Fig. 5.

(a) Numerically computed Ex(x,y) of the TE11 (top right) and TM11 (bottom right) at 3.2 THz along with the resulting Ex(x,y) when they are added out of phase with certain weights (left) for the AgI-lined cylindrical waveguide of [25]. (b) Experimental Ex(x,y) profiles of the TE11 (top right) and TE12 (bottom right) modes in the AgI/Ag waveguide and their superposition (left).

Fig. 6.
Fig. 6.

Far-field spatial intensity distribution of a 140 mm long waveguide with a 1.0 mm bore diameter having an ultrathin AgI coating of 1 μm and excited by an azimuthally polarized microring distributed quantum cascade laser operating at 3.2 THz.

Metrics