Abstract

The absolute Raman gain for the Q(1) vibrational Raman transition in H2 at 4155 cm−1 has been measured at pump (Stokes) wavelengths of 532 (683), 477 (594), and 307 (351) nm using a pulsed pump and a cw probe laser, both of which were single frequency. Good agreement is found between the measured and calculated Raman steady-state gain coefficients. Empirical formulas are derived to calculate the Raman gain as a function of wavelength, density, and temperature.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Walmsley, M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962 (1983).
    [CrossRef]
  2. N. Faabricius, K. Nattermann, D. von der Linde, “Macroscopic manifestation of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113 (1984).
    [CrossRef]
  3. H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 398 (1979).
    [CrossRef] [PubMed]
  4. H. Komine, E. A. Stappaerts, “Higher-Stokes-order Raman conversion of XeCl laser in hydrogen,” Opt. Lett. 7, 157 (1982).
    [CrossRef] [PubMed]
  5. R. S. F. Chang, N. Djeu, “Amplification of a diffraction-limited Stokes beam by a severely distorted pump,” Opt. Lett. 8, 139 (1983).
    [CrossRef] [PubMed]
  6. C. Woods, K. Tang, C. Howton, D. Muller, R. O. Hunter, “Aperture combined Raman laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).
  7. R. W. Minck, R. W. Terhune, W. G. Rado, “Laser-stimulated Raman effect and resonant four-photon interactions in gaseous H2, D2, and CH4,” Appl. Phys. Lett. 3, 181 (1963).
    [CrossRef]
  8. N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).
  9. E. E. Hagenlocker, R. W. Minck, W. G. Rado, “Effects of phonon lifetime on stimulated optical scattering in gases,” Phys. Rev. 154, 226 (1967).
    [CrossRef]
  10. G. V. Venkin, L. L. Kulyuk, D. I. Maleev, “Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation,” Kvantovaya Elektron. (Moscow) 2, 2475 (1975) [Sov. J. Quantum Electron. 5, 1348 (1976)].
  11. F. P. Milanovich, “Stimulated Raman Scattering,” in Volume III of the CRC Handbook Series of Laser Science and Technology, M. J. Weber, ed. (CRC, Cleveland, Ohio, to be published).
  12. H. Komine, Northrop Research and Technology Center, One Research Park, Palos Verdes Peninsula, California 90274 (personal communication, 1983).
  13. W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth in H2,” in Excimer Lasers—83, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).
  14. W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and lineshift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
    [CrossRef] [PubMed]
  15. A. Owyoung, “High-resolution cw stimulated Raman spectroscopy in molecular hydrogen,” Opt. Lett. 2, 91 (1978).
    [CrossRef] [PubMed]
  16. H. Hunt, W. L. Barnes, P. J. Brannon, “Pressure broadened linewidths in the electric-field-induced spectrum of H2,” Phys. Rev. A 1, 1570 (1970).
    [CrossRef]
  17. E. S. Yeung, “Applications of inverse Raman spectroscopy,” in Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, ed. (Academic, New York, 1981), p. 172.
  18. W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1971), Vol. 2, p. 1077.
  19. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
    [CrossRef]
  20. W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).
  21. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  22. W. Huo, NASA Ames Research Center, Moffett Field, California 94035 (personal communication, 1983).
  23. A. L. Ford, J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418 (1973).
    [CrossRef]
  24. W. Kolos, L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
    [CrossRef]
  25. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
    [CrossRef]
  26. J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1 (1972).
    [CrossRef]
  27. A. D. May, G. Varghese, J. C. Stryland, H. L. Welsh, “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Can. J. Phys. 42, 1058 (1964).
    [CrossRef]
  28. B. P. Stoicheff, “High resolution Raman spectroscopy of gases IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730 (1957).
    [CrossRef]
  29. J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of some hydrogen molecular constants,” J. Mol. Spectrosc. 21, 208 (1966).
    [CrossRef]
  30. P. J. Brannon, C. H. Church, C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium, and deuterium hydride,” J. Mol. Spectrosc. 27, 44 (1968).
    [CrossRef]
  31. D. E. Jennings, A. Weber, J. W. Brault, “Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2,” Appl. Opt. 25, 284 (1986).
    [CrossRef]

1986 (2)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and lineshift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

D. E. Jennings, A. Weber, J. W. Brault, “Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2,” Appl. Opt. 25, 284 (1986).
[CrossRef]

1984 (1)

N. Faabricius, K. Nattermann, D. von der Linde, “Macroscopic manifestation of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

1983 (2)

I. A. Walmsley, M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962 (1983).
[CrossRef]

R. S. F. Chang, N. Djeu, “Amplification of a diffraction-limited Stokes beam by a severely distorted pump,” Opt. Lett. 8, 139 (1983).
[CrossRef] [PubMed]

1982 (1)

1979 (2)

H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 398 (1979).
[CrossRef] [PubMed]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

1978 (1)

1976 (1)

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).

1975 (1)

G. V. Venkin, L. L. Kulyuk, D. I. Maleev, “Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation,” Kvantovaya Elektron. (Moscow) 2, 2475 (1975) [Sov. J. Quantum Electron. 5, 1348 (1976)].

1973 (1)

A. L. Ford, J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418 (1973).
[CrossRef]

1972 (1)

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1 (1972).
[CrossRef]

1970 (1)

H. Hunt, W. L. Barnes, P. J. Brannon, “Pressure broadened linewidths in the electric-field-induced spectrum of H2,” Phys. Rev. A 1, 1570 (1970).
[CrossRef]

1968 (1)

P. J. Brannon, C. H. Church, C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium, and deuterium hydride,” J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

1967 (2)

W. Kolos, L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

E. E. Hagenlocker, R. W. Minck, W. G. Rado, “Effects of phonon lifetime on stimulated optical scattering in gases,” Phys. Rev. 154, 226 (1967).
[CrossRef]

1966 (1)

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of some hydrogen molecular constants,” J. Mol. Spectrosc. 21, 208 (1966).
[CrossRef]

1964 (1)

A. D. May, G. Varghese, J. C. Stryland, H. L. Welsh, “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Can. J. Phys. 42, 1058 (1964).
[CrossRef]

1963 (1)

R. W. Minck, R. W. Terhune, W. G. Rado, “Laser-stimulated Raman effect and resonant four-photon interactions in gaseous H2, D2, and CH4,” Appl. Phys. Lett. 3, 181 (1963).
[CrossRef]

1957 (1)

B. P. Stoicheff, “High resolution Raman spectroscopy of gases IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730 (1957).
[CrossRef]

1953 (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
[CrossRef]

Barnes, W. L.

H. Hunt, W. L. Barnes, P. J. Brannon, “Pressure broadened linewidths in the electric-field-induced spectrum of H2,” Phys. Rev. A 1, 1570 (1970).
[CrossRef]

Bischel, W. K.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and lineshift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth in H2,” in Excimer Lasers—83, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Black, G.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Bloembergen, N.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).

Brannon, P. J.

H. Hunt, W. L. Barnes, P. J. Brannon, “Pressure broadened linewidths in the electric-field-induced spectrum of H2,” Phys. Rev. A 1, 1570 (1970).
[CrossRef]

P. J. Brannon, C. H. Church, C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium, and deuterium hydride,” J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

Brault, J. W.

Bret, G.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).

Browne, J. C.

A. L. Ford, J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418 (1973).
[CrossRef]

Chang, R. S. F.

Church, C. H.

P. J. Brannon, C. H. Church, C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium, and deuterium hydride,” J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
[CrossRef]

Djeu, N.

Dyer, M. J.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and lineshift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth in H2,” in Excimer Lasers—83, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Faabricius, N.

N. Faabricius, K. Nattermann, D. von der Linde, “Macroscopic manifestation of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Foltz, J. V.

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of some hydrogen molecular constants,” J. Mol. Spectrosc. 21, 208 (1966).
[CrossRef]

Ford, A. L.

A. L. Ford, J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418 (1973).
[CrossRef]

Goldhar, J.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Hagenlocker, E. E.

E. E. Hagenlocker, R. W. Minck, W. G. Rado, “Effects of phonon lifetime on stimulated optical scattering in gases,” Phys. Rev. 154, 226 (1967).
[CrossRef]

Howton, C.

C. Woods, K. Tang, C. Howton, D. Muller, R. O. Hunter, “Aperture combined Raman laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Hunt, H.

H. Hunt, W. L. Barnes, P. J. Brannon, “Pressure broadened linewidths in the electric-field-induced spectrum of H2,” Phys. Rev. A 1, 1570 (1970).
[CrossRef]

Hunter, R. O.

C. Woods, K. Tang, C. Howton, D. Muller, R. O. Hunter, “Aperture combined Raman laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Huo, W.

W. Huo, NASA Ames Research Center, Moffett Field, California 94035 (personal communication, 1983).

Javan, A.

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1 (1972).
[CrossRef]

Jennings, D. E.

Kaiser, W.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1971), Vol. 2, p. 1077.

Kolos, W.

W. Kolos, L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

Komine, H.

Kulyuk, L. L.

G. V. Venkin, L. L. Kulyuk, D. I. Maleev, “Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation,” Kvantovaya Elektron. (Moscow) 2, 2475 (1975) [Sov. J. Quantum Electron. 5, 1348 (1976)].

Lallemand, P.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Maier, M.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1971), Vol. 2, p. 1077.

Maleev, D. I.

G. V. Venkin, L. L. Kulyuk, D. I. Maleev, “Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation,” Kvantovaya Elektron. (Moscow) 2, 2475 (1975) [Sov. J. Quantum Electron. 5, 1348 (1976)].

May, A. D.

A. D. May, G. Varghese, J. C. Stryland, H. L. Welsh, “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Can. J. Phys. 42, 1058 (1964).
[CrossRef]

Milanovich, F. P.

F. P. Milanovich, “Stimulated Raman Scattering,” in Volume III of the CRC Handbook Series of Laser Science and Technology, M. J. Weber, ed. (CRC, Cleveland, Ohio, to be published).

Minck, R. W.

E. E. Hagenlocker, R. W. Minck, W. G. Rado, “Effects of phonon lifetime on stimulated optical scattering in gases,” Phys. Rev. 154, 226 (1967).
[CrossRef]

R. W. Minck, R. W. Terhune, W. G. Rado, “Laser-stimulated Raman effect and resonant four-photon interactions in gaseous H2, D2, and CH4,” Appl. Phys. Lett. 3, 181 (1963).
[CrossRef]

Muller, D.

C. Woods, K. Tang, C. Howton, D. Muller, R. O. Hunter, “Aperture combined Raman laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Murray, J. R.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1 (1972).
[CrossRef]

Nattermann, K.

N. Faabricius, K. Nattermann, D. von der Linde, “Macroscopic manifestation of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Owyoung, A.

Peters, C. W.

P. J. Brannon, C. H. Church, C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium, and deuterium hydride,” J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

Pine, A.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).

Rado, W. G.

E. E. Hagenlocker, R. W. Minck, W. G. Rado, “Effects of phonon lifetime on stimulated optical scattering in gases,” Phys. Rev. 154, 226 (1967).
[CrossRef]

R. W. Minck, R. W. Terhune, W. G. Rado, “Laser-stimulated Raman effect and resonant four-photon interactions in gaseous H2, D2, and CH4,” Appl. Phys. Lett. 3, 181 (1963).
[CrossRef]

Rank, D. H.

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of some hydrogen molecular constants,” J. Mol. Spectrosc. 21, 208 (1966).
[CrossRef]

Raymer, M. G.

I. A. Walmsley, M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962 (1983).
[CrossRef]

Simova, P.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).

Stappaerts, E. A.

Stoicheff, B. P.

B. P. Stoicheff, “High resolution Raman spectroscopy of gases IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730 (1957).
[CrossRef]

Stryland, J. C.

A. D. May, G. Varghese, J. C. Stryland, H. L. Welsh, “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Can. J. Phys. 42, 1058 (1964).
[CrossRef]

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Tang, K.

C. Woods, K. Tang, C. Howton, D. Muller, R. O. Hunter, “Aperture combined Raman laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Terhune, R. W.

R. W. Minck, R. W. Terhune, W. G. Rado, “Laser-stimulated Raman effect and resonant four-photon interactions in gaseous H2, D2, and CH4,” Appl. Phys. Lett. 3, 181 (1963).
[CrossRef]

Varghese, G.

A. D. May, G. Varghese, J. C. Stryland, H. L. Welsh, “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Can. J. Phys. 42, 1058 (1964).
[CrossRef]

Venkin, G. V.

G. V. Venkin, L. L. Kulyuk, D. I. Maleev, “Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation,” Kvantovaya Elektron. (Moscow) 2, 2475 (1975) [Sov. J. Quantum Electron. 5, 1348 (1976)].

von der Linde, D.

N. Faabricius, K. Nattermann, D. von der Linde, “Macroscopic manifestation of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Walmsley, I. A.

I. A. Walmsley, M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962 (1983).
[CrossRef]

Weber, A.

Welsh, H. L.

A. D. May, G. Varghese, J. C. Stryland, H. L. Welsh, “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Can. J. Phys. 42, 1058 (1964).
[CrossRef]

Wiggins, T. A.

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of some hydrogen molecular constants,” J. Mol. Spectrosc. 21, 208 (1966).
[CrossRef]

Wolniewicz, L.

W. Kolos, L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

Woods, C.

C. Woods, K. Tang, C. Howton, D. Muller, R. O. Hunter, “Aperture combined Raman laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

Yeung, E. S.

E. S. Yeung, “Applications of inverse Raman spectroscopy,” in Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, ed. (Academic, New York, 1981), p. 172.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. W. Minck, R. W. Terhune, W. G. Rado, “Laser-stimulated Raman effect and resonant four-photon interactions in gaseous H2, D2, and CH4,” Appl. Phys. Lett. 3, 181 (1963).
[CrossRef]

Can. J. Phys. (2)

A. D. May, G. Varghese, J. C. Stryland, H. L. Welsh, “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Can. J. Phys. 42, 1058 (1964).
[CrossRef]

B. P. Stoicheff, “High resolution Raman spectroscopy of gases IX. Spectra of H2, HD, and D2,” Can. J. Phys. 35, 730 (1957).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197 (1976).

J. Chem. Phys. (1)

W. Kolos, L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

J. Mol. Spectrosc. (3)

J. V. Foltz, D. H. Rank, T. A. Wiggins, “Determinations of some hydrogen molecular constants,” J. Mol. Spectrosc. 21, 208 (1966).
[CrossRef]

P. J. Brannon, C. H. Church, C. W. Peters, “Electric field induced spectra of molecular hydrogen, deuterium, and deuterium hydride,” J. Mol. Spectrosc. 27, 44 (1968).
[CrossRef]

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1 (1972).
[CrossRef]

Kvantovaya Elektron. (Moscow) (1)

G. V. Venkin, L. L. Kulyuk, D. I. Maleev, “Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation,” Kvantovaya Elektron. (Moscow) 2, 2475 (1975) [Sov. J. Quantum Electron. 5, 1348 (1976)].

Opt. Lett. (4)

Phys. Rev. (2)

E. E. Hagenlocker, R. W. Minck, W. G. Rado, “Effects of phonon lifetime on stimulated optical scattering in gases,” Phys. Rev. 154, 226 (1967).
[CrossRef]

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
[CrossRef]

Phys. Rev. A (3)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and lineshift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
[CrossRef] [PubMed]

A. L. Ford, J. C. Browne, “Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering,” Phys. Rev. A 7, 418 (1973).
[CrossRef]

H. Hunt, W. L. Barnes, P. J. Brannon, “Pressure broadened linewidths in the electric-field-induced spectrum of H2,” Phys. Rev. A 1, 1570 (1970).
[CrossRef]

Phys. Rev. Lett. (2)

I. A. Walmsley, M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962 (1983).
[CrossRef]

N. Faabricius, K. Nattermann, D. von der Linde, “Macroscopic manifestation of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Other (9)

C. Woods, K. Tang, C. Howton, D. Muller, R. O. Hunter, “Aperture combined Raman laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

E. S. Yeung, “Applications of inverse Raman spectroscopy,” in Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, ed. (Academic, New York, 1981), p. 172.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1971), Vol. 2, p. 1077.

F. P. Milanovich, “Stimulated Raman Scattering,” in Volume III of the CRC Handbook Series of Laser Science and Technology, M. J. Weber, ed. (CRC, Cleveland, Ohio, to be published).

H. Komine, Northrop Research and Technology Center, One Research Park, Palos Verdes Peninsula, California 90274 (personal communication, 1983).

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth in H2,” in Excimer Lasers—83, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983).

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

W. Huo, NASA Ames Research Center, Moffett Field, California 94035 (personal communication, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus for the Raman gain measurements.

Fig. 2
Fig. 2

Spatial beam profiles for the Raman gain experiments at 532 nm. The solid line is the normalized pump laser intensity as a function of beam radius, whereas the dotted line is the near-Gaussian distribution of the cw probe laser at 613 nm.

Fig. 3
Fig. 3

Absolute Raman gain and absorption signals as a function of time. For the gain signals, the pump wavelengths and fluences are (a) solid line, 532 nm with F = 19 mJ/cm2 and (b) +++, 307 nm with F = 0.72 mJ/cm2. (c) The inverse Raman absorption signal (dotted line) with the pump wavelength at 594 nm (cw probe at 477 nm) and F = 19 mJ/cm2.

Fig. 4
Fig. 4

Absolute Raman gain coefficients at 447 nm derived from the inverse Raman experiment as a function of laser fluence. The reported value of the gain coefficient at this wavelength was the value extrapolated to zero fluence.

Fig. 5
Fig. 5

The high-density limit of the steady-state Raman gain coefficient for the Q(1) transition in H2 as a function of pump laser wavelength. The solid line is the calculated value using Eq. (11).

Tables (1)

Tables Icon

Table 1 Comparison of Measured and Calculated Q(1) Gain Coefficients at 298 K

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A = f ( 0 ) [ 2 π 0 r f ( r ) d r ] 1 .
S ( t ) = S 0 ( t ) exp [ γ g I ( t ) L ] ,
γ g = A L E ln [ ( S ( t ) / S 0 ( t ) ] d t ,
γ g = 2 λ s 2 h ν s Δ N π Δ ν σ Ω ,
σ Ω ( 90 ° ) = A ν s 4 ( ν i 2 ν p 2 ) 2 ,
σ Ω = ( 2 π ν s ) 4 ( α 01 2 + 4 45 b J , J γ 01 2 ) .
σ Ω = ( 2 π ν s ) 4 ( α 01 2 + 7 45 J f J b J , J γ 01 2 ) ,
Δ ν = ( 309 / ρ ) ( T / 298 ) 0.92 + [ 51.8 + 0.152 ( T 298 ) + 4.85 × 10 4 ( T 298 ) 2 ] ρ .
ν r ( ρ ) = ν r ( 0 ) + C ρ + D ρ 2 .
C = [ ν r ( ρ ) ν r ( 0 ) ] ρ 1 = [ 96.1 + 0.777 ( T 298 ) 8.82 × 10 4 ( T 298 ) 2 ] .
γ g = 9.37 × 10 6 ( 52 ρ / Δ ν ) ( K B / 0.658 ) ( ν p 4155 ) × ( 7.19 × 10 9 ν p 2 ) 2 ,

Metrics