Abstract

A new type of the pump–probe technique with temporally incoherent light is proposed for use in the subpicosecond and femtosecond time regions in the wide-wavelength range. This method permits measurement of the longitudinal relaxation time T1 with the time resolution determined by the characteristic time of the intensity correlation of the incident light independently of its pulse width. For a demonstration of this technique, absorption recovery time T1 = 180 psec of a dye solution was measured with Q-switched laser pulses of 150-nsec duration. Differences between this method and the corresponding one used to measure the transverse relaxation time T2 with incoherent light is discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, the feature issue on femtosecond optical interactions, D. Grischkowsky, ed., J. Opt. Soc. Am. B 2, 584–686 (1985).
  2. S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
    [CrossRef]
  3. H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
    [CrossRef]
  4. M. Fujiwara, R. Kuroda, and H. Nakatsuka, “Measurement of ultrafast dephasing time of cresyl fast violet in cellulose by photon echoes with incoherent light,” J. Opt. Soc. Am. B 2, 1634–1639 (1985).
    [CrossRef]
  5. N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
    [CrossRef]
  6. T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.
  7. A. M. Weiner, S. De Silvestri, and E. P. Ippen, “Three-pulse scattering for femtosecond dephasing studies: theory and experiment,” J. Opt. Soc. Am. B 2, 654–662 (1985).
    [CrossRef]
  8. M. Matsuoka, presented at the United States–Japan Seminar on Coherence, Incoherence, and Chaos in Quantum Electronics, September 1, 1984, Nara, Japan.
  9. E. P. Ippen and C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
    [CrossRef]
  10. A. J. Taylor, D. J. Erskine, and C. L. Tang, “Ultrafast relaxation dynamics of photoexcited carriers in GaAs and related compounds,” J. Opt. Soc. Am. B 2, 663–673 (1985).
    [CrossRef]
  11. See, for example, R. Loudon, The Quantum Theory of Light, (Clarendon, Oxford, 1973), pp. 81–119; J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1971), pp. 123–150.
  12. Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
    [CrossRef]
  13. D. W. Phillion, D. J. Kuizenga, and A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
    [CrossRef]
  14. T. J. Chuang and K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
    [CrossRef]
  15. D. J. Kuizenga, D. W. Phillion, T. Lund, and A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
    [CrossRef]
  16. H. A. Pike and M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
    [CrossRef]
  17. Recently S. Saikan and et al. (Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan) tested the idea proposed here with an incompletely mode-locked dye laser (Refs. 2 and 3) as an excitation light source (personal communication). In this case the curvature of the base cannot be eliminated, and the characteristics of the light are not clear.
  18. M. D. Dawson, A. S. L. Gomes, W. Sibbett, and J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
    [CrossRef]
  19. M. A. Duguay, J. W. Hansen, and S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
    [CrossRef]
  20. T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.
  21. M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
    [CrossRef]
  22. S. L. Palfrey and T. F. Heinz, “Coherent interactions in pump-probe absorption measurements: the effect of phase gratings,” J. Opt. Soc. Am. B 2, 674–679 (1985).
    [CrossRef]

1985 (6)

1984 (4)

M. D. Dawson, A. S. L. Gomes, W. Sibbett, and J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

1981 (1)

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

1976 (1)

D. W. Phillion, D. J. Kuizenga, and A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

1973 (1)

D. J. Kuizenga, D. W. Phillion, T. Lund, and A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

1971 (1)

T. J. Chuang and K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

1970 (2)

H. A. Pike and M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, and S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Asaka, S.

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

Chuang, T. J.

T. J. Chuang and K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

Dawson, M. D.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, and J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

De Silvestri, S.

Duguay, M. A.

M. A. Duguay, J. W. Hansen, and S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Eisenthal, K. B.

T. J. Chuang and K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

Erskine, D. J.

Fujiwara, M.

M. Fujiwara, R. Kuroda, and H. Nakatsuka, “Measurement of ultrafast dephasing time of cresyl fast violet in cellulose by photon echoes with incoherent light,” J. Opt. Soc. Am. B 2, 1634–1639 (1985).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

Gomes, A. S. L.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, and J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

Hansen, J. W.

M. A. Duguay, J. W. Hansen, and S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Heinz, T. F.

Hercher, M.

H. A. Pike and M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

Ippen, E. P.

A. M. Weiner, S. De Silvestri, and E. P. Ippen, “Three-pulse scattering for femtosecond dephasing studies: theory and experiment,” J. Opt. Soc. Am. B 2, 654–662 (1985).
[CrossRef]

E. P. Ippen and C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Kabelka, V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Kuizenga, D. J.

D. W. Phillion, D. J. Kuizenga, and A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, and A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Kuroda, R.

Loudon, R.

See, for example, R. Loudon, The Quantum Theory of Light, (Clarendon, Oxford, 1973), pp. 81–119; J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1971), pp. 123–150.

Lund, T.

D. J. Kuizenga, D. W. Phillion, T. Lund, and A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Masalov, A. V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Matsuoka, M.

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

M. Matsuoka, presented at the United States–Japan Seminar on Coherence, Incoherence, and Chaos in Quantum Electronics, September 1, 1984, Nara, Japan.

Morita, N.

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.

T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.

Nakatsuka, H.

M. Fujiwara, R. Kuroda, and H. Nakatsuka, “Measurement of ultrafast dephasing time of cresyl fast violet in cellulose by photon echoes with incoherent light,” J. Opt. Soc. Am. B 2, 1634–1639 (1985).
[CrossRef]

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

Palfrey, S. L.

Phillion, D. W.

D. W. Phillion, D. J. Kuizenga, and A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, and A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Pike, H. A.

H. A. Pike and M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

Saikan, S.

Recently S. Saikan and et al. (Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan) tested the idea proposed here with an incompletely mode-locked dye laser (Refs. 2 and 3) as an excitation light source (personal communication). In this case the curvature of the base cannot be eliminated, and the characteristics of the light are not clear.

Shank, C. V.

E. P. Ippen and C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Shapiro, S. L.

M. A. Duguay, J. W. Hansen, and S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Sibbett, W.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, and J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

Siegman, A. E.

D. W. Phillion, D. J. Kuizenga, and A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, and A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Tang, C. L.

Tauc, J.

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

Taylor, A. J.

Taylor, J. R.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, and J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

Tomita, M.

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

Vardeny, Z.

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

Vasil’eva, M. A.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Vischakas, J.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Weiner, A. M.

Yajima, T.

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.

T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.

Appl. Phys. Lett. (1)

D. W. Phillion, D. J. Kuizenga, and A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

T. J. Chuang and K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. A. Duguay, J. W. Hansen, and S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

J. Appl. Phys. (1)

H. A. Pike and M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (5)

M. D. Dawson, A. S. L. Gomes, W. Sibbett, and J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, and A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

Phys. Rev. A (2)

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

Other (6)

T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.

See, for example, R. Loudon, The Quantum Theory of Light, (Clarendon, Oxford, 1973), pp. 81–119; J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1971), pp. 123–150.

M. Matsuoka, presented at the United States–Japan Seminar on Coherence, Incoherence, and Chaos in Quantum Electronics, September 1, 1984, Nara, Japan.

E. P. Ippen and C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Recently S. Saikan and et al. (Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan) tested the idea proposed here with an incompletely mode-locked dye laser (Refs. 2 and 3) as an excitation light source (personal communication). In this case the curvature of the base cannot be eliminated, and the characteristics of the light are not clear.

T. Yajima and N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic curve of the pump–probe correlation with temporally incoherent light.

Fig. 2
Fig. 2

Schematic diagram of the experiment. PM, photomultiplier.

Fig. 3
Fig. 3

The pump–probe correlation trace of the solution of Rhodamine 6G in water (a) with nearly transform-limited mode-locked pulses (pulse width, 90 psec), (b) with Q-switched pulses (pulse width, 150 nsec; width of the coherent spike of the intensity correlation, 26 psec).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T - R e [ - d t E 0 * ( t ) d P 3 ( t ) d t ] ,
P 3 ( t ) 0 d s exp ( - s / T 1 ) E 0 ( t ) E 0 * ( t - s ) E 0 ( t - s ) .
Δ T - d t 0 d s exp ( - s / T 1 ) × E 0 * ( t ) E 0 ( t ) E 0 * ( t - s ) E 0 ( t - s ) .
E 0 ( t ) = E pump ( t ) + E probe ( t ) = E ( t - τ 1 ) + α E ( t - τ 2 ) ,
Δ T ( τ 12 ) α 2 0 d s exp ( - s / T 1 ) × - d t [ E * ( t - τ 12 ) E ( t - τ 12 ) E * ( t - s ) E ( t - s ) + E * ( t - τ 12 ) E ( t ) E * ( t - s ) E ( t - s - τ 12 ) ] .
Δ T ( τ 12 ) α 2 0 d s exp ( - s / T 1 ) × [ E * ( t - τ 12 ) E ( t - s ) E * ( t - s ) E ( t - τ 12 ) + E * ( t - τ 12 ) E ( t - τ 12 ) E * ( t - s ) E ( t - s ) + E * ( t - τ 12 ) E ( t ) E * ( t - s ) E ( t - s - τ 12 ) + E * ( t - τ 12 ) E ( t - s - τ 12 ) E * ( t - s ) E ( t ) ]
Δ T ( τ 12 ) α 2 0 d s exp ( - s / T 1 ) × [ E * ( t ) E ( t - s + τ 12 ) 2 + E * ( t ) E ( t ) 2 + E * ( t - τ 12 ) E ( t ) 2 + E * ( t ) E ( t - s ) 2 ] .

Metrics