Abstract

A new type of the pump–probe technique with temporally incoherent light is proposed for use in the subpicosecond and femtosecond time regions in the wide-wavelength range. This method permits measurement of the longitudinal relaxation time T1 with the time resolution determined by the characteristic time of the intensity correlation of the incident light independently of its pulse width. For a demonstration of this technique, absorption recovery time T1 = 180 psec of a dye solution was measured with Q-switched laser pulses of 150-nsec duration. Differences between this method and the corresponding one used to measure the transverse relaxation time T2 with incoherent light is discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, the feature issue on femtosecond optical interactions, D. Grischkowsky, ed., J. Opt. Soc. Am. B 2, 584–686 (1985).
  2. S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
    [CrossRef]
  3. H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
    [CrossRef]
  4. M. Fujiwara, R. Kuroda, H. Nakatsuka, “Measurement of ultrafast dephasing time of cresyl fast violet in cellulose by photon echoes with incoherent light,” J. Opt. Soc. Am. B 2, 1634–1639 (1985).
    [CrossRef]
  5. N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
    [CrossRef]
  6. T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.
  7. A. M. Weiner, S. De Silvestri, E. P. Ippen, “Three-pulse scattering for femtosecond dephasing studies: theory and experiment,” J. Opt. Soc. Am. B 2, 654–662 (1985).
    [CrossRef]
  8. M. Matsuoka, presented at the United States–Japan Seminar on Coherence, Incoherence, and Chaos in Quantum Electronics, September 1, 1984, Nara, Japan.
  9. E. P. Ippen, C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
    [CrossRef]
  10. A. J. Taylor, D. J. Erskine, C. L. Tang, “Ultrafast relaxation dynamics of photoexcited carriers in GaAs and related compounds,” J. Opt. Soc. Am. B 2, 663–673 (1985).
    [CrossRef]
  11. See, for example, R. Loudon, The Quantum Theory of Light, (Clarendon, Oxford, 1973), pp. 81–119; J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1971), pp. 123–150.
  12. Z. Vardeny, J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
    [CrossRef]
  13. D. W. Phillion, D. J. Kuizenga, A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
    [CrossRef]
  14. T. J. Chuang, K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
    [CrossRef]
  15. D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
    [CrossRef]
  16. H. A. Pike, M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
    [CrossRef]
  17. Recently S. Saikan et al. (Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan) tested the idea proposed here with an incompletely mode-locked dye laser (Refs. 2 and 3) as an excitation light source (personal communication). In this case the curvature of the base cannot be eliminated, and the characteristics of the light are not clear.
  18. M. D. Dawson, A. S. L. Gomes, W. Sibbett, J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
    [CrossRef]
  19. M. A. Duguay, J. W. Hansen, S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
    [CrossRef]
  20. T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.
  21. M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
    [CrossRef]
  22. S. L. Palfrey, T. F. Heinz, “Coherent interactions in pump-probe absorption measurements: the effect of phase gratings,” J. Opt. Soc. Am. B 2, 674–679 (1985).
    [CrossRef]

1985 (6)

1984 (4)

M. D. Dawson, A. S. L. Gomes, W. Sibbett, J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

1981 (1)

Z. Vardeny, J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

1976 (1)

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

1973 (1)

D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

1971 (1)

T. J. Chuang, K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

1970 (2)

H. A. Pike, M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Asaka, S.

H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

Chuang, T. J.

T. J. Chuang, K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

Dawson, M. D.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

De Silvestri, S.

Duguay, M. A.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Eisenthal, K. B.

T. J. Chuang, K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

Erskine, D. J.

Fujiwara, M.

M. Fujiwara, R. Kuroda, H. Nakatsuka, “Measurement of ultrafast dephasing time of cresyl fast violet in cellulose by photon echoes with incoherent light,” J. Opt. Soc. Am. B 2, 1634–1639 (1985).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

Gomes, A. S. L.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

Hansen, J. W.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Heinz, T. F.

Hercher, M.

H. A. Pike, M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

Ippen, E. P.

A. M. Weiner, S. De Silvestri, E. P. Ippen, “Three-pulse scattering for femtosecond dephasing studies: theory and experiment,” J. Opt. Soc. Am. B 2, 654–662 (1985).
[CrossRef]

E. P. Ippen, C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Kabelka, V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Kuizenga, D. J.

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Kuroda, R.

Loudon, R.

See, for example, R. Loudon, The Quantum Theory of Light, (Clarendon, Oxford, 1973), pp. 81–119; J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1971), pp. 123–150.

Lund, T.

D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Masalov, A. V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Matsuoka, M.

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

M. Matsuoka, presented at the United States–Japan Seminar on Coherence, Incoherence, and Chaos in Quantum Electronics, September 1, 1984, Nara, Japan.

Morita, N.

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.

T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.

Nakatsuka, H.

M. Fujiwara, R. Kuroda, H. Nakatsuka, “Measurement of ultrafast dephasing time of cresyl fast violet in cellulose by photon echoes with incoherent light,” J. Opt. Soc. Am. B 2, 1634–1639 (1985).
[CrossRef]

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

Palfrey, S. L.

Phillion, D. W.

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Pike, H. A.

H. A. Pike, M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

Saikan, S.

Recently S. Saikan et al. (Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan) tested the idea proposed here with an incompletely mode-locked dye laser (Refs. 2 and 3) as an excitation light source (personal communication). In this case the curvature of the base cannot be eliminated, and the characteristics of the light are not clear.

Shank, C. V.

E. P. Ippen, C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Shapiro, S. L.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

Sibbett, W.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

Siegman, A. E.

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Tang, C. L.

Tauc, J.

Z. Vardeny, J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

Taylor, A. J.

Taylor, J. R.

M. D. Dawson, A. S. L. Gomes, W. Sibbett, J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

Tomita, M.

H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

Vardeny, Z.

Z. Vardeny, J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

Vasil’eva, M. A.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Vischakas, J.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

Weiner, A. M.

Yajima, T.

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.

T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.

Appl. Phys. Lett. (1)

D. W. Phillion, D. J. Kuizenga, A. E. Siegman, “Subnanosecond relaxation time measurements using a transient induced grating method,” Appl. Phys. Lett. 27, 85–86 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

T. J. Chuang, K. B. Eisenthal, “Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses,” Chem. Phys. Lett. 11, 368–370 (1971).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. A. Duguay, J. W. Hansen, S. L. Shapiro, “Study of the Nd:glass laser radiation,” IEEE J. Quantum Electron. QE-6, 725–743 (1970).
[CrossRef]

J. Appl. Phys. (1)

H. A. Pike, M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (5)

H. Nakatsuka, M. Tomita, M. Fujiwara, S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150–152 (1984).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, T. Lund, A. E. Siegman, “Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Z. Vardeny, J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39, 396–400 (1981).
[CrossRef]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, “Measurement of relaxation times by phase-modulated ultrashort light pulses,” Opt. Commun. 53, 412–416 (1985).
[CrossRef]

M. D. Dawson, A. S. L. Gomes, W. Sibbett, J. R. Taylor, “Characterization of the output from a Q-switched/mode-locked cw Nd:YAG laser,” Opt. Commun. 52, 295–300 (1984).
[CrossRef]

Phys. Rev. A (2)

S. Asaka, H. Nakatsuka, M. Fujiwara, M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286–2289 (1984).
[CrossRef]

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

Other (6)

T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Kyoto, April 2, 1985.

M. Matsuoka, presented at the United States–Japan Seminar on Coherence, Incoherence, and Chaos in Quantum Electronics, September 1, 1984, Nara, Japan.

E. P. Ippen, C. V. Shank, “Techniques for Measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

See, for example, R. Loudon, The Quantum Theory of Light, (Clarendon, Oxford, 1973), pp. 81–119; J. Peřina, Coherence of Light (Van Nostrand Reinhold, London, 1971), pp. 123–150.

Recently S. Saikan et al. (Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan) tested the idea proposed here with an incompletely mode-locked dye laser (Refs. 2 and 3) as an excitation light source (personal communication). In this case the curvature of the base cannot be eliminated, and the characteristics of the light are not clear.

T. Yajima, N. Morita, presented at the meeting of the Physical Society of Japan, Fukuoka, April 2, 1984.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic curve of the pump–probe correlation with temporally incoherent light.

Fig. 2
Fig. 2

Schematic diagram of the experiment. PM, photomultiplier.

Fig. 3
Fig. 3

The pump–probe correlation trace of the solution of Rhodamine 6G in water (a) with nearly transform-limited mode-locked pulses (pulse width, 90 psec), (b) with Q-switched pulses (pulse width, 150 nsec; width of the coherent spike of the intensity correlation, 26 psec).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T - R e [ - d t E 0 * ( t ) d P 3 ( t ) d t ] ,
P 3 ( t ) 0 d s exp ( - s / T 1 ) E 0 ( t ) E 0 * ( t - s ) E 0 ( t - s ) .
Δ T - d t 0 d s exp ( - s / T 1 ) × E 0 * ( t ) E 0 ( t ) E 0 * ( t - s ) E 0 ( t - s ) .
E 0 ( t ) = E pump ( t ) + E probe ( t ) = E ( t - τ 1 ) + α E ( t - τ 2 ) ,
Δ T ( τ 12 ) α 2 0 d s exp ( - s / T 1 ) × - d t [ E * ( t - τ 12 ) E ( t - τ 12 ) E * ( t - s ) E ( t - s ) + E * ( t - τ 12 ) E ( t ) E * ( t - s ) E ( t - s - τ 12 ) ] .
Δ T ( τ 12 ) α 2 0 d s exp ( - s / T 1 ) × [ E * ( t - τ 12 ) E ( t - s ) E * ( t - s ) E ( t - τ 12 ) + E * ( t - τ 12 ) E ( t - τ 12 ) E * ( t - s ) E ( t - s ) + E * ( t - τ 12 ) E ( t ) E * ( t - s ) E ( t - s - τ 12 ) + E * ( t - τ 12 ) E ( t - s - τ 12 ) E * ( t - s ) E ( t ) ]
Δ T ( τ 12 ) α 2 0 d s exp ( - s / T 1 ) × [ E * ( t ) E ( t - s + τ 12 ) 2 + E * ( t ) E ( t ) 2 + E * ( t - τ 12 ) E ( t ) 2 + E * ( t ) E ( t - s ) 2 ] .

Metrics