Abstract

We have employed dye-laser pulses of 10-nsec duration and 1.5–10-nm bandwidth in a transient four-wave-mixing experiment to study high-perturber-pressure collisional dephasing in dilute atomic sodium vapor. Working at argon perturber pressures of several atmospheres, we are able clearly to resolve dephasing times over a thousand times shorter than our excitation pulse duration. Measured dephasing rates are in excellent agreement with those measured by more traditional methods. When both of the sodium D lines are excited, our signal displays quantum-beat-like oscillations at the 0.52-THz frequency difference between these two states. We provide a simple picture explaining the origin of these beats.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Halbout and D. R. Grischkowsky, “12-fs ultrashort optical pulse compression at a high repetition rate,” Appl. Phys. Lett. 45, 1281 (1984).
    [Crossref]
  2. J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, “Generation and measurement of optical pulses as short as 16 fs,” Appl. Phys. Lett. 44, 832 (1984).
    [Crossref]
  3. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
    [Crossref]
  4. C. V. Shank, “Measurement of ultrafast phenomena in the femtosecond time domain,” Science 219, 1027 (1983).
    [Crossref] [PubMed]
  5. R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 617 (1981).
    [Crossref]
  6. K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Lauberau, eds., Picosecond Phenomena III (Springer-Verlag, Berlin, 1982); D. H. Auston and K. B. Eisenthal, eds., Ultrafast Phenomena IV (Springer-Verlag, Berlin, 1984).
    [Crossref]
  7. For a general overview of short pulse applications and generation, see J. Opt. Soc. Am. B 2(4) (1985).
  8. S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286 (1984).
    [Crossref]
  9. N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525 (1984).
    [Crossref]
  10. R. Beach and S. R. Hartmann, “Incoherent photon echoes,” Phys. Rev. Lett. 53, 663 (1984).
    [Crossref]
  11. H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150 (1984).
    [Crossref]
  12. M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultra-short light pulses,” Opt. Commun. 53, 412 (1985).
    [Crossref]
  13. T. Yajima, N. Morita, and Y. Ishida, “Ultrahigh time-resolution coherent transient spectroscopy with incoherent or phase-modulated light,” J. Opt. Soc. B 1, 526 (1984).
  14. R. Beach, D. DeBeer, and S. R. Hartmann, “Time dependent four-wave mixing using intense incoherent light,” Phys. Rev. A 32, 3464 (1985).
    [Crossref]
  15. A. M. Weiner, S. De Silvestri, and E. P. Ippen, “Three-pulse scattering for femtosecond dephasing studies: theory and experiment,” J. Opt. Soc. Am. B 2, 654 (1985).
    [Crossref]
  16. A. M. Weiner and E. P. Ippen, “Novel transient scattering technique for femtosecond dephasing measurements,” Opt. Lett. 9, 53 (1984).
    [Crossref] [PubMed]
  17. J. A. Shirley, R. J. Hall, and A. C. Eckbreth, “Folded boxcars for rotational Raman studies,” Opt. Lett. 5, 380 (1980).
    [Crossref] [PubMed]
  18. Y. Prior, “Three-dimensional phase matching in four wave mixing,” Appl. Opt. 19, 1741 (1980).
    [Crossref]
  19. W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991 (1979).
    [Crossref]
  20. E. L. Lewis, “Collisional relaxation of atomic excited states, line broadening, and interatomic interactions,” Phys. Rep. 58, 1 (1980).
    [Crossref]
  21. N. Allard and J. Kielkopf, “The effect of neutral nonresonant collisions on atomic spectral lines,” Rev. Mod. Phys. 54, 1103 (1982).
    [Crossref]
  22. S. Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29, 1103 (1957).
  23. R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
    [Crossref]
  24. J. Kielkopf, “Measurement of the width, shift, and asymmetry of the sodium D lines broadened by noble gases,” J. Phys. B 13, 3813 (1980).
    [Crossref]
  25. R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Noble-gas broadening of the sodium D lines measured by photon echoes,” J. Phys. B 13, L363–L368 (1980).
    [Crossref]
  26. R. H. Chatham, A. Gallagher, and E. L. Lewis, “Broadening of the sodium D lines by rare gases,” J. Phys. B 13, L7–L11 (1980).
    [Crossref]
  27. K. G. Popov and V. P. Ruzov, “Broadening of the sodium resonance line λ = 589.0 nm due to collisions with atoms and molecules,” Opt. Spectrosc. (USSR) 48, 372 (1980).
  28. D. G. McCartan and J. M. Farr, “Collision broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985 (1976).
    [Crossref]
  29. R. K. Jain, H. W. K. Tom, and J. C. Diels, “Picosecond resolution studies of ground state quantum beats and rapid collisional relaxation processes in sodium vapor,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, and A. Lauberov, eds. (Springer Verlag, Berlin, 198-), pp. 250–252.

1985 (4)

For a general overview of short pulse applications and generation, see J. Opt. Soc. Am. B 2(4) (1985).

R. Beach, D. DeBeer, and S. R. Hartmann, “Time dependent four-wave mixing using intense incoherent light,” Phys. Rev. A 32, 3464 (1985).
[Crossref]

A. M. Weiner, S. De Silvestri, and E. P. Ippen, “Three-pulse scattering for femtosecond dephasing studies: theory and experiment,” J. Opt. Soc. Am. B 2, 654 (1985).
[Crossref]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultra-short light pulses,” Opt. Commun. 53, 412 (1985).
[Crossref]

1984 (8)

T. Yajima, N. Morita, and Y. Ishida, “Ultrahigh time-resolution coherent transient spectroscopy with incoherent or phase-modulated light,” J. Opt. Soc. B 1, 526 (1984).

A. M. Weiner and E. P. Ippen, “Novel transient scattering technique for femtosecond dephasing measurements,” Opt. Lett. 9, 53 (1984).
[Crossref] [PubMed]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286 (1984).
[Crossref]

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525 (1984).
[Crossref]

R. Beach and S. R. Hartmann, “Incoherent photon echoes,” Phys. Rev. Lett. 53, 663 (1984).
[Crossref]

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150 (1984).
[Crossref]

J.-M. Halbout and D. R. Grischkowsky, “12-fs ultrashort optical pulse compression at a high repetition rate,” Appl. Phys. Lett. 45, 1281 (1984).
[Crossref]

J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, “Generation and measurement of optical pulses as short as 16 fs,” Appl. Phys. Lett. 44, 832 (1984).
[Crossref]

1983 (1)

C. V. Shank, “Measurement of ultrafast phenomena in the femtosecond time domain,” Science 219, 1027 (1983).
[Crossref] [PubMed]

1982 (2)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

N. Allard and J. Kielkopf, “The effect of neutral nonresonant collisions on atomic spectral lines,” Rev. Mod. Phys. 54, 1103 (1982).
[Crossref]

1981 (2)

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 617 (1981).
[Crossref]

R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
[Crossref]

1980 (7)

J. Kielkopf, “Measurement of the width, shift, and asymmetry of the sodium D lines broadened by noble gases,” J. Phys. B 13, 3813 (1980).
[Crossref]

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Noble-gas broadening of the sodium D lines measured by photon echoes,” J. Phys. B 13, L363–L368 (1980).
[Crossref]

R. H. Chatham, A. Gallagher, and E. L. Lewis, “Broadening of the sodium D lines by rare gases,” J. Phys. B 13, L7–L11 (1980).
[Crossref]

K. G. Popov and V. P. Ruzov, “Broadening of the sodium resonance line λ = 589.0 nm due to collisions with atoms and molecules,” Opt. Spectrosc. (USSR) 48, 372 (1980).

E. L. Lewis, “Collisional relaxation of atomic excited states, line broadening, and interatomic interactions,” Phys. Rep. 58, 1 (1980).
[Crossref]

J. A. Shirley, R. J. Hall, and A. C. Eckbreth, “Folded boxcars for rotational Raman studies,” Opt. Lett. 5, 380 (1980).
[Crossref] [PubMed]

Y. Prior, “Three-dimensional phase matching in four wave mixing,” Appl. Opt. 19, 1741 (1980).
[Crossref]

1979 (1)

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991 (1979).
[Crossref]

1976 (1)

D. G. McCartan and J. M. Farr, “Collision broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985 (1976).
[Crossref]

1957 (1)

S. Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29, 1103 (1957).

Allard, N.

N. Allard and J. Kielkopf, “The effect of neutral nonresonant collisions on atomic spectral lines,” Rev. Mod. Phys. 54, 1103 (1982).
[Crossref]

Asaka, S.

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286 (1984).
[Crossref]

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150 (1984).
[Crossref]

Beach, R.

R. Beach, D. DeBeer, and S. R. Hartmann, “Time dependent four-wave mixing using intense incoherent light,” Phys. Rev. A 32, 3464 (1985).
[Crossref]

R. Beach and S. R. Hartmann, “Incoherent photon echoes,” Phys. Rev. Lett. 53, 663 (1984).
[Crossref]

Chatham, R. H.

R. H. Chatham, A. Gallagher, and E. L. Lewis, “Broadening of the sodium D lines by rare gases,” J. Phys. B 13, L7–L11 (1980).
[Crossref]

Chen, S. Y.

S. Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29, 1103 (1957).

De Silvestri, S.

DeBeer, D.

R. Beach, D. DeBeer, and S. R. Hartmann, “Time dependent four-wave mixing using intense incoherent light,” Phys. Rev. A 32, 3464 (1985).
[Crossref]

Diels, J. C.

R. K. Jain, H. W. K. Tom, and J. C. Diels, “Picosecond resolution studies of ground state quantum beats and rapid collisional relaxation processes in sodium vapor,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, and A. Lauberov, eds. (Springer Verlag, Berlin, 198-), pp. 250–252.

Eckbreth, A. C.

Ely, D.

R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
[Crossref]

Farr, J. M.

D. G. McCartan and J. M. Farr, “Collision broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985 (1976).
[Crossref]

Fork, R. L.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 617 (1981).
[Crossref]

Fujimoto, J. G.

J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, “Generation and measurement of optical pulses as short as 16 fs,” Appl. Phys. Lett. 44, 832 (1984).
[Crossref]

Fujiwara, M.

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286 (1984).
[Crossref]

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150 (1984).
[Crossref]

Gallagher, A.

R. H. Chatham, A. Gallagher, and E. L. Lewis, “Broadening of the sodium D lines by rare gases,” J. Phys. B 13, L7–L11 (1980).
[Crossref]

Greene, B. I.

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 617 (1981).
[Crossref]

Grischkowsky, D. R.

J.-M. Halbout and D. R. Grischkowsky, “12-fs ultrashort optical pulse compression at a high repetition rate,” Appl. Phys. Lett. 45, 1281 (1984).
[Crossref]

Halbout, J.-M.

J.-M. Halbout and D. R. Grischkowsky, “12-fs ultrashort optical pulse compression at a high repetition rate,” Appl. Phys. Lett. 45, 1281 (1984).
[Crossref]

Hall, R. J.

Hartmann, S. R.

R. Beach, D. DeBeer, and S. R. Hartmann, “Time dependent four-wave mixing using intense incoherent light,” Phys. Rev. A 32, 3464 (1985).
[Crossref]

R. Beach and S. R. Hartmann, “Incoherent photon echoes,” Phys. Rev. Lett. 53, 663 (1984).
[Crossref]

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Noble-gas broadening of the sodium D lines measured by photon echoes,” J. Phys. B 13, L363–L368 (1980).
[Crossref]

Hesselink, W. H.

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991 (1979).
[Crossref]

Ippen, E. P.

Ishida, Y.

T. Yajima, N. Morita, and Y. Ishida, “Ultrahigh time-resolution coherent transient spectroscopy with incoherent or phase-modulated light,” J. Opt. Soc. B 1, 526 (1984).

Jain, R. K.

R. K. Jain, H. W. K. Tom, and J. C. Diels, “Picosecond resolution studies of ground state quantum beats and rapid collisional relaxation processes in sodium vapor,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, and A. Lauberov, eds. (Springer Verlag, Berlin, 198-), pp. 250–252.

Kabelka, V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultra-short light pulses,” Opt. Commun. 53, 412 (1985).
[Crossref]

Kachru, R.

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Noble-gas broadening of the sodium D lines measured by photon echoes,” J. Phys. B 13, L363–L368 (1980).
[Crossref]

Kielkopf, J.

N. Allard and J. Kielkopf, “The effect of neutral nonresonant collisions on atomic spectral lines,” Rev. Mod. Phys. 54, 1103 (1982).
[Crossref]

J. Kielkopf, “Measurement of the width, shift, and asymmetry of the sodium D lines broadened by noble gases,” J. Phys. B 13, 3813 (1980).
[Crossref]

Lewis, E. L.

R. H. Chatham, A. Gallagher, and E. L. Lewis, “Broadening of the sodium D lines by rare gases,” J. Phys. B 13, L7–L11 (1980).
[Crossref]

E. L. Lewis, “Collisional relaxation of atomic excited states, line broadening, and interatomic interactions,” Phys. Rep. 58, 1 (1980).
[Crossref]

Masalov, A. V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultra-short light pulses,” Opt. Commun. 53, 412 (1985).
[Crossref]

Matsuoka, M.

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286 (1984).
[Crossref]

McCartan, D. G.

D. G. McCartan and J. M. Farr, “Collision broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985 (1976).
[Crossref]

Morita, N.

T. Yajima, N. Morita, and Y. Ishida, “Ultrahigh time-resolution coherent transient spectroscopy with incoherent or phase-modulated light,” J. Opt. Soc. B 1, 526 (1984).

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525 (1984).
[Crossref]

Mossberg, T. W.

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Noble-gas broadening of the sodium D lines measured by photon echoes,” J. Phys. B 13, L363–L368 (1980).
[Crossref]

Nakatsuka, H.

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150 (1984).
[Crossref]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286 (1984).
[Crossref]

Phillips, W. D.

R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
[Crossref]

Popov, K. G.

K. G. Popov and V. P. Ruzov, “Broadening of the sodium resonance line λ = 589.0 nm due to collisions with atoms and molecules,” Opt. Spectrosc. (USSR) 48, 372 (1980).

Prior, Y.

Pritchard, D. E.

R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
[Crossref]

Ruzov, V. P.

K. G. Popov and V. P. Ruzov, “Broadening of the sodium resonance line λ = 589.0 nm due to collisions with atoms and molecules,” Opt. Spectrosc. (USSR) 48, 372 (1980).

Shank, C. V.

C. V. Shank, “Measurement of ultrafast phenomena in the femtosecond time domain,” Science 219, 1027 (1983).
[Crossref] [PubMed]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 617 (1981).
[Crossref]

Shirley, J. A.

Spielfiedel, A.

R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
[Crossref]

Stolen, R. H.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Takeo, M.

S. Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29, 1103 (1957).

Tom, H. W. K.

R. K. Jain, H. W. K. Tom, and J. C. Diels, “Picosecond resolution studies of ground state quantum beats and rapid collisional relaxation processes in sodium vapor,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, and A. Lauberov, eds. (Springer Verlag, Berlin, 198-), pp. 250–252.

Tomita, M.

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150 (1984).
[Crossref]

Tomlinson, W. J.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Vasil’eva, M. A.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultra-short light pulses,” Opt. Commun. 53, 412 (1985).
[Crossref]

Vischakas, J.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultra-short light pulses,” Opt. Commun. 53, 412 (1985).
[Crossref]

Walkup, R.

R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
[Crossref]

Weiner, A. M.

Wiersma, D. A.

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991 (1979).
[Crossref]

Yajima, T.

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525 (1984).
[Crossref]

T. Yajima, N. Morita, and Y. Ishida, “Ultrahigh time-resolution coherent transient spectroscopy with incoherent or phase-modulated light,” J. Opt. Soc. B 1, 526 (1984).

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J.-M. Halbout and D. R. Grischkowsky, “12-fs ultrashort optical pulse compression at a high repetition rate,” Appl. Phys. Lett. 45, 1281 (1984).
[Crossref]

J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, “Generation and measurement of optical pulses as short as 16 fs,” Appl. Phys. Lett. 44, 832 (1984).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 617 (1981).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. B (1)

T. Yajima, N. Morita, and Y. Ishida, “Ultrahigh time-resolution coherent transient spectroscopy with incoherent or phase-modulated light,” J. Opt. Soc. B 1, 526 (1984).

J. Phys. B (5)

R. Walkup, A. Spielfiedel, D. Ely, W. D. Phillips, and D. E. Pritchard, “Pressure-broadening rates from the near-wing amplitude,” J. Phys. B 14, 1953 (1981).
[Crossref]

J. Kielkopf, “Measurement of the width, shift, and asymmetry of the sodium D lines broadened by noble gases,” J. Phys. B 13, 3813 (1980).
[Crossref]

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Noble-gas broadening of the sodium D lines measured by photon echoes,” J. Phys. B 13, L363–L368 (1980).
[Crossref]

R. H. Chatham, A. Gallagher, and E. L. Lewis, “Broadening of the sodium D lines by rare gases,” J. Phys. B 13, L7–L11 (1980).
[Crossref]

D. G. McCartan and J. M. Farr, “Collision broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985 (1976).
[Crossref]

Opt. Commun. (2)

H. Nakatsuka, M. Tomita, M. Fujiwara, and S. Asaka, “Subpicosecond photon echoes by using nanosecond laser pulses,” Opt. Commun. 52, 150 (1984).
[Crossref]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, “Measurement of relaxation times by phase-modulated ultra-short light pulses,” Opt. Commun. 53, 412 (1985).
[Crossref]

Opt. Lett. (2)

Opt. Spectrosc. (USSR) (1)

K. G. Popov and V. P. Ruzov, “Broadening of the sodium resonance line λ = 589.0 nm due to collisions with atoms and molecules,” Opt. Spectrosc. (USSR) 48, 372 (1980).

Phys. Rep. (1)

E. L. Lewis, “Collisional relaxation of atomic excited states, line broadening, and interatomic interactions,” Phys. Rep. 58, 1 (1980).
[Crossref]

Phys. Rev. A (3)

R. Beach, D. DeBeer, and S. R. Hartmann, “Time dependent four-wave mixing using intense incoherent light,” Phys. Rev. A 32, 3464 (1985).
[Crossref]

S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, “Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass,” Phys. Rev. A 29, 2286 (1984).
[Crossref]

N. Morita and T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525 (1984).
[Crossref]

Phys. Rev. Lett. (2)

R. Beach and S. R. Hartmann, “Incoherent photon echoes,” Phys. Rev. Lett. 53, 663 (1984).
[Crossref]

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991 (1979).
[Crossref]

Rev. Mod. Phys. (2)

N. Allard and J. Kielkopf, “The effect of neutral nonresonant collisions on atomic spectral lines,” Rev. Mod. Phys. 54, 1103 (1982).
[Crossref]

S. Y. Chen and M. Takeo, “Broadening and shift of spectral lines due to the presence of foreign gases,” Rev. Mod. Phys. 29, 1103 (1957).

Science (1)

C. V. Shank, “Measurement of ultrafast phenomena in the femtosecond time domain,” Science 219, 1027 (1983).
[Crossref] [PubMed]

Other (2)

K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Lauberau, eds., Picosecond Phenomena III (Springer-Verlag, Berlin, 1982); D. H. Auston and K. B. Eisenthal, eds., Ultrafast Phenomena IV (Springer-Verlag, Berlin, 1984).
[Crossref]

R. K. Jain, H. W. K. Tom, and J. C. Diels, “Picosecond resolution studies of ground state quantum beats and rapid collisional relaxation processes in sodium vapor,” in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, and A. Lauberov, eds. (Springer Verlag, Berlin, 198-), pp. 250–252.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Wave-vector geometry. (a) Spatial configuration of beams entering and leaving sample. Observations were made along direction S. Signals can also be emitted along S′, but only signals emitted along S are perfectly phase matched. Spatial filtering was employed to isolate the signal. (b) View of beams looking into the sample from the output side. In the case of an inhomogeneously broadened sample, our signals constitute photon echoes. They are generated only in the S direction for t21 = t2t1 < 0. In our experiment, homogeneous broadening dominates and the FWM signal is symmetric about t21 = 0. In our measurements, time delays for which t21 > 0 were generally employed.

Fig. 2
Fig. 2

The mechanism of ultrahigh time resolution as viewed from the frequency domain. 4S0(ω) (dashed curve) represents four times the power spectrum of a single excitation pulse. S(ω) (dotted curve) shows the power spectrum associated with two identical pulses separated by delay t21. h(ω) represents a Lorentzian material line. The height of h(ω) relative to S(ω) and S0(ω) has been chosen arbitrarily. Also, we have suppressed the noisy character of the power spectra introduced by the non-Fourier-transform-limited nature of the pulse. (a) For t21T2, S(ω) is slowly modulated compared to the width of h(ω). Atoms can thus be differentially excited depending on whether the envelope of S(ω) is large-or small near their resonance frequency, ω0. Since the oscillation of S(ω) changes phase, ϕ(r), as a function of position, a spatial excitation grating is created. The signal arises from the scattering of pulse three off this grating. (b) For t21T2, S(ω) is rapidly modulated compared to the width of h(ω). Since the atomic excitation is proportional to an average over many oscillations of S(ω), changes in ϕ(r) do not lead to differential excitation, spatial excitation gratings do not form, and no FWM signal is observed.

Fig. 3
Fig. 3

The mechanism of ultrahigh time resolution as viewed from the time domain. Two phase noisy square pulses of duration td are shown. Each pulse is composed of a series of N = td/τc, constant phase subpulses of duration τc. Numerically corresponding subpulses within the two pulses are phase coherent. Subpulses with different numbers are incoherent. The net grating is the sum of gratings produced by all combinations of subpulses.

Fig. 4
Fig. 4

Experiment. PDL, pulsed dye laser; SF, spatial filter; BS, beam splitter; CC, corner cube. The three beams are derived from a single pulsed dye laser. Beams 2 and 3 can be delayed in steps of about 0.17 psec. Also, beam 3 is delayed by a length large compared to τc and T2 so that it is uncorrelated with the writing beams. Spatial filtering is employed after the sodium cell to isolate the signal from the excitation pulses.

Fig. 5
Fig. 5

FWM intensity IS as a function of t21 when a single sodium D line is excited. Traces are shown for two argon pressures. The laser linewidth is 1.5 nm and tuned to excite predominantly the 3S–3P1/2 transition in each case. The dephasing rate is seen to scale linearly with argon pressure.

Fig. 6
Fig. 6

FWM intensity as a function of t21 when both sodium D lines are excited. As the laser is tuned to excite both D lines, an oscillation appears at the 0.52-THz difference frequency. (a) D1(3SP1/2) is primarily excited. (b) D1 and D2 are nearly equally excited.

Fig. 7
Fig. 7

FWM intensity for positive and negative values of t21. Consistent with Eqs. (2), the trace is symmetric about t21 = 0 for the homogeneously broadened sample.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E p ( t ) = E { t - [ ( k ^ p · r / c ) + t p ] } ,
E s = E 0 exp ( - t 21 + K · r / c ) / T 2 ) ,
I s ( t 21 ) = I 0 exp ( - 2 t 21 / T 2 )
S ( r , ω , t 21 ) = 2 S 0 ( ω ) q ( r , ω , t 21 ) ,
q ( r , ω , t 21 ) = 2 cos 2 { [ ω t 21 + ϕ ( r ) ] / 2 }
Δ n ( r , t 21 ) - + h ( ω ) S ( r , ω , t 21 ) d ω ,
σ = 1 n v r T 2 ,
v r = ( 8 k b T / π μ ) 1 / 2
Δ n ( r , t 21 ) - + [ h 1 ( ω ) + h 2 ( ω ) ] S ( r , ω , t 21 ) d ω ,
Δ n ( r , t 21 ) a 1 S ( r , ω 1 , t 21 ) + a 2 S ( r , ω 2 , t 21 ) .
a 1 cos ( ω 1 K · r / c + ω 1 t 21 ) Δ n ( r , t 21 ) ( a 1 + a 2 ) + a 2 cos ( ω 2 K · r / c + ω 2 t 21 ) .

Metrics