Abstract

Intracavity measurements of degenerate four-wave mixing have been performed with femtosecond laser pulses to determine the phase relaxation time of the absorbing dye, diethyloxadicarbocyanine iodide (DODCI), in ethylene glycol. The influence of various broadening mechanisms (homogeneous, inhomogeneous, cross relaxation) and pulse parameters (frequency, pulse shape, phase modulation, and energy) is investigated. The dependence of the signal energy on probe delay is found to be strongly affected by the phase modulation of the pulse; hence determination of the phase relaxation time requires accurate diagnostics of the laser source. The rise of the signal provides an upper limit of 10 fsec for the phase relaxation time of the main absorption band of the dye DODCI. The decay of the signal is found to be related to the phase relaxation time of a two-photon absorption in the same dye. Accurate fitting of the data with the theory yields 50 ± 10 fsec for the dephasing time of the two-photon excitation in DODCI.

© 1986 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical dephasing in saturable-absorbing organic dye IR140

Carl M. Liebig and W. M. Dennis
Appl. Opt. 45(9) 2072-2076 (2006)

Degenerate four-wave mixing spectroscopy with short-pulse lasers: theoretical analysis

Thomas A. Reichardt and Robert P. Lucht
J. Opt. Soc. Am. B 13(12) 2807-2817 (1996)

Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations

Robert P. Lucht, Roger L. Farrow, and David J. Rakestraw
J. Opt. Soc. Am. B 10(9) 1508-1520 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription