Abstract

We demonstrate persistent storage, recall, and conjugation of picosecond light signals from various model objects, including a coin, by making use of coherent optical responses in photochemically active media. A simple linear theory of holographic storage and playback of both the spatial and the temporal behavior of the signal field is shown to describe well the experimental results obtained by utilizing octaethylporphin-doped polystyrene at 1.8 K as a spectrally selective recording material.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole burning in the contour of a pure electronic line in a Shpolskii system,” JETP Lett. 20, 216–218 (1974).
  2. B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation,” Opt. Commun. 12, 191–193 (1974).
    [CrossRef]
  3. L. A. Rebane, A. A. Gorokhovskii, J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
    [CrossRef]
  4. J. Friedrich, D. Haarer, “Photochemical hole-burning: spectroscopic study of relaxation processes in polymers and glasses,” Angew. Chem. Int. Ed. Engl. 23, 113–140 (1984).
    [CrossRef]
  5. A. Szabo, “Frequency selective optical memory,” U.S. Patent No. 3,896,420 (1975).
  6. G. Castro, D. Haarer, R. M. Macfarlane, H. D. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (1978).
  7. K. K. Rebane, “Laser study of inhomogeneous spectra of molecules in solids,” in Proceedings of the International Conference on Lasers ’82 (STS, McLean, Va., 1982), pp. 340–345.
  8. A. Szabo, in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1980), pp. 374–379.
  9. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
    [CrossRef] [PubMed]
  10. A. K. Rebane, R. K. Kaarli, P. M. Saari, “Hole-burning by coherent sequencies of picosecond pulses,” Opt. Spectrosk. 55, 405–407 (1983).
  11. A. K. Rebane, R. K. Kaarli, P. M. Saari, “Dynamic picosecond holography produced by means of photochemical hole burning,” JETP Lett 38, 383–386 (1983).
  12. A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
    [CrossRef]
  13. W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
    [CrossRef]
  14. W. H. Hesselink, D. A. Wiersma, “Photon echoes, stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981); H. de Vries, D. A. Wiersma, “Numerical simulations of accumulated simulated photon echoes,” J. Chem. Phys. 80, 657–666 (1984).
    [CrossRef]
  15. P. Saari, A. Rebane, “Time-and-space-domain holography of pulsed light fields in spectrally selective photoactive medium,” Proc. Acad. Sci. Eston. SSR 33, 322–332 (1984).
  16. A. Rebane, R. Kaarli, “Picosecond pulse shaping by photochemical time-domain holography,” Chem. Phys. Lett. 101, 317–319 (1983).
    [CrossRef]
  17. A. K. Rebane, R. K. Kaarli, P. M. Saari, “Burning and probing photochemical holes with picosecond pulses,” J. Mol. Struc. 114, 343–345 (1984).
    [CrossRef]
  18. P. M. Saari, R. K. Kaarli, A. K. Rebane, “Holography of spatial–temporal events,” Kvantovaya Elektron. (Kiev) 12, 672–682 (1985).
  19. E. I. Shtyrkov, V. V. Samartsev, “Dynamic holograms on the superposition states of atoms,” Phys. Status Solidi A 45, 647–655 (1978).
    [CrossRef]
  20. Yu. N. Denisyuk, “Holography and its prospects,” in Problems in Optical Holography, Yu. N. Denisyuk, ed. (Nauka, Leningrad, 1981), pp. 7–27.
  21. N. W. Carlson, W. Babbitt, T. W. Mossberg, “Storage and phase conjugation of light pulses using stimulated photon echoes,” Opt. Lett. 8, 623–625 (1983).
    [CrossRef] [PubMed]
  22. A. Freiberg, P. Saari, “Picosecond spectrochronography,” IEEE J. Quantum Electron. QE-19, 622–629 (1983).
    [CrossRef]

1985

P. M. Saari, R. K. Kaarli, A. K. Rebane, “Holography of spatial–temporal events,” Kvantovaya Elektron. (Kiev) 12, 672–682 (1985).

1984

P. Saari, A. Rebane, “Time-and-space-domain holography of pulsed light fields in spectrally selective photoactive medium,” Proc. Acad. Sci. Eston. SSR 33, 322–332 (1984).

J. Friedrich, D. Haarer, “Photochemical hole-burning: spectroscopic study of relaxation processes in polymers and glasses,” Angew. Chem. Int. Ed. Engl. 23, 113–140 (1984).
[CrossRef]

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Burning and probing photochemical holes with picosecond pulses,” J. Mol. Struc. 114, 343–345 (1984).
[CrossRef]

1983

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Hole-burning by coherent sequencies of picosecond pulses,” Opt. Spectrosk. 55, 405–407 (1983).

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Dynamic picosecond holography produced by means of photochemical hole burning,” JETP Lett 38, 383–386 (1983).

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

A. Rebane, R. Kaarli, “Picosecond pulse shaping by photochemical time-domain holography,” Chem. Phys. Lett. 101, 317–319 (1983).
[CrossRef]

N. W. Carlson, W. Babbitt, T. W. Mossberg, “Storage and phase conjugation of light pulses using stimulated photon echoes,” Opt. Lett. 8, 623–625 (1983).
[CrossRef] [PubMed]

A. Freiberg, P. Saari, “Picosecond spectrochronography,” IEEE J. Quantum Electron. QE-19, 622–629 (1983).
[CrossRef]

1982

L. A. Rebane, A. A. Gorokhovskii, J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
[CrossRef] [PubMed]

1981

W. H. Hesselink, D. A. Wiersma, “Photon echoes, stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981); H. de Vries, D. A. Wiersma, “Numerical simulations of accumulated simulated photon echoes,” J. Chem. Phys. 80, 657–666 (1984).
[CrossRef]

1979

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

1978

E. I. Shtyrkov, V. V. Samartsev, “Dynamic holograms on the superposition states of atoms,” Phys. Status Solidi A 45, 647–655 (1978).
[CrossRef]

1974

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole burning in the contour of a pure electronic line in a Shpolskii system,” JETP Lett. 20, 216–218 (1974).

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation,” Opt. Commun. 12, 191–193 (1974).
[CrossRef]

Anijalg, A.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Babbitt, W.

Bykovskaya, L. A.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation,” Opt. Commun. 12, 191–193 (1974).
[CrossRef]

Carlson, N. W.

Castro, G.

G. Castro, D. Haarer, R. M. Macfarlane, H. D. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (1978).

Denisyuk, Yu. N.

Yu. N. Denisyuk, “Holography and its prospects,” in Problems in Optical Holography, Yu. N. Denisyuk, ed. (Nauka, Leningrad, 1981), pp. 7–27.

Freiberg, A.

A. Freiberg, P. Saari, “Picosecond spectrochronography,” IEEE J. Quantum Electron. QE-19, 622–629 (1983).
[CrossRef]

Friedrich, J.

J. Friedrich, D. Haarer, “Photochemical hole-burning: spectroscopic study of relaxation processes in polymers and glasses,” Angew. Chem. Int. Ed. Engl. 23, 113–140 (1984).
[CrossRef]

Gorokhovskii, A. A.

L. A. Rebane, A. A. Gorokhovskii, J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole burning in the contour of a pure electronic line in a Shpolskii system,” JETP Lett. 20, 216–218 (1974).

Haarer, D.

J. Friedrich, D. Haarer, “Photochemical hole-burning: spectroscopic study of relaxation processes in polymers and glasses,” Angew. Chem. Int. Ed. Engl. 23, 113–140 (1984).
[CrossRef]

G. Castro, D. Haarer, R. M. Macfarlane, H. D. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (1978).

Hesselink, W. H.

W. H. Hesselink, D. A. Wiersma, “Photon echoes, stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981); H. de Vries, D. A. Wiersma, “Numerical simulations of accumulated simulated photon echoes,” J. Chem. Phys. 80, 657–666 (1984).
[CrossRef]

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Kaarli, R.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

A. Rebane, R. Kaarli, “Picosecond pulse shaping by photochemical time-domain holography,” Chem. Phys. Lett. 101, 317–319 (1983).
[CrossRef]

Kaarli, R. K.

P. M. Saari, R. K. Kaarli, A. K. Rebane, “Holography of spatial–temporal events,” Kvantovaya Elektron. (Kiev) 12, 672–682 (1985).

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Burning and probing photochemical holes with picosecond pulses,” J. Mol. Struc. 114, 343–345 (1984).
[CrossRef]

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Hole-burning by coherent sequencies of picosecond pulses,” Opt. Spectrosk. 55, 405–407 (1983).

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Dynamic picosecond holography produced by means of photochemical hole burning,” JETP Lett 38, 383–386 (1983).

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole burning in the contour of a pure electronic line in a Shpolskii system,” JETP Lett. 20, 216–218 (1974).

Kharlamov, B. M.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation,” Opt. Commun. 12, 191–193 (1974).
[CrossRef]

Kikas, J. V.

L. A. Rebane, A. A. Gorokhovskii, J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

Macfarlane, R. M.

G. Castro, D. Haarer, R. M. Macfarlane, H. D. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (1978).

Mossberg, T. W.

Personov, R. I.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation,” Opt. Commun. 12, 191–193 (1974).
[CrossRef]

Rebane, A.

P. Saari, A. Rebane, “Time-and-space-domain holography of pulsed light fields in spectrally selective photoactive medium,” Proc. Acad. Sci. Eston. SSR 33, 322–332 (1984).

A. Rebane, R. Kaarli, “Picosecond pulse shaping by photochemical time-domain holography,” Chem. Phys. Lett. 101, 317–319 (1983).
[CrossRef]

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Rebane, A. K.

P. M. Saari, R. K. Kaarli, A. K. Rebane, “Holography of spatial–temporal events,” Kvantovaya Elektron. (Kiev) 12, 672–682 (1985).

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Burning and probing photochemical holes with picosecond pulses,” J. Mol. Struc. 114, 343–345 (1984).
[CrossRef]

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Dynamic picosecond holography produced by means of photochemical hole burning,” JETP Lett 38, 383–386 (1983).

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Hole-burning by coherent sequencies of picosecond pulses,” Opt. Spectrosk. 55, 405–407 (1983).

Rebane, K. K.

K. K. Rebane, “Laser study of inhomogeneous spectra of molecules in solids,” in Proceedings of the International Conference on Lasers ’82 (STS, McLean, Va., 1982), pp. 340–345.

Rebane, L. A.

L. A. Rebane, A. A. Gorokhovskii, J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole burning in the contour of a pure electronic line in a Shpolskii system,” JETP Lett. 20, 216–218 (1974).

Saari, P.

P. Saari, A. Rebane, “Time-and-space-domain holography of pulsed light fields in spectrally selective photoactive medium,” Proc. Acad. Sci. Eston. SSR 33, 322–332 (1984).

A. Freiberg, P. Saari, “Picosecond spectrochronography,” IEEE J. Quantum Electron. QE-19, 622–629 (1983).
[CrossRef]

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Saari, P. M.

P. M. Saari, R. K. Kaarli, A. K. Rebane, “Holography of spatial–temporal events,” Kvantovaya Elektron. (Kiev) 12, 672–682 (1985).

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Burning and probing photochemical holes with picosecond pulses,” J. Mol. Struc. 114, 343–345 (1984).
[CrossRef]

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Hole-burning by coherent sequencies of picosecond pulses,” Opt. Spectrosk. 55, 405–407 (1983).

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Dynamic picosecond holography produced by means of photochemical hole burning,” JETP Lett 38, 383–386 (1983).

Samartsev, V. V.

E. I. Shtyrkov, V. V. Samartsev, “Dynamic holograms on the superposition states of atoms,” Phys. Status Solidi A 45, 647–655 (1978).
[CrossRef]

Shtyrkov, E. I.

E. I. Shtyrkov, V. V. Samartsev, “Dynamic holograms on the superposition states of atoms,” Phys. Status Solidi A 45, 647–655 (1978).
[CrossRef]

Szabo, A.

A. Szabo, in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1980), pp. 374–379.

A. Szabo, “Frequency selective optical memory,” U.S. Patent No. 3,896,420 (1975).

Timpmann, K.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Trommsdorff, H. D.

G. Castro, D. Haarer, R. M. Macfarlane, H. D. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (1978).

Wiersma, D. A.

W. H. Hesselink, D. A. Wiersma, “Photon echoes, stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981); H. de Vries, D. A. Wiersma, “Numerical simulations of accumulated simulated photon echoes,” J. Chem. Phys. 80, 657–666 (1984).
[CrossRef]

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

J. Friedrich, D. Haarer, “Photochemical hole-burning: spectroscopic study of relaxation processes in polymers and glasses,” Angew. Chem. Int. Ed. Engl. 23, 113–140 (1984).
[CrossRef]

Appl. Phys. B

L. A. Rebane, A. A. Gorokhovskii, J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

Chem. Phys. Lett.

A. Rebane, R. Kaarli, “Picosecond pulse shaping by photochemical time-domain holography,” Chem. Phys. Lett. 101, 317–319 (1983).
[CrossRef]

IEEE J. Quantum Electron.

A. Freiberg, P. Saari, “Picosecond spectrochronography,” IEEE J. Quantum Electron. QE-19, 622–629 (1983).
[CrossRef]

J. Chem. Phys.

W. H. Hesselink, D. A. Wiersma, “Photon echoes, stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981); H. de Vries, D. A. Wiersma, “Numerical simulations of accumulated simulated photon echoes,” J. Chem. Phys. 80, 657–666 (1984).
[CrossRef]

J. Mol. Struc.

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Burning and probing photochemical holes with picosecond pulses,” J. Mol. Struc. 114, 343–345 (1984).
[CrossRef]

JETP Lett

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Dynamic picosecond holography produced by means of photochemical hole burning,” JETP Lett 38, 383–386 (1983).

JETP Lett.

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole burning in the contour of a pure electronic line in a Shpolskii system,” JETP Lett. 20, 216–218 (1974).

Kvantovaya Elektron. (Kiev)

P. M. Saari, R. K. Kaarli, A. K. Rebane, “Holography of spatial–temporal events,” Kvantovaya Elektron. (Kiev) 12, 672–682 (1985).

Opt. Commun.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation,” Opt. Commun. 12, 191–193 (1974).
[CrossRef]

Opt. Lett.

Opt. Spectrosk.

A. K. Rebane, R. K. Kaarli, P. M. Saari, “Hole-burning by coherent sequencies of picosecond pulses,” Opt. Spectrosk. 55, 405–407 (1983).

Phys. Rev. Lett.

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Phys. Status Solidi A

E. I. Shtyrkov, V. V. Samartsev, “Dynamic holograms on the superposition states of atoms,” Phys. Status Solidi A 45, 647–655 (1978).
[CrossRef]

Proc. Acad. Sci. Eston. SSR

P. Saari, A. Rebane, “Time-and-space-domain holography of pulsed light fields in spectrally selective photoactive medium,” Proc. Acad. Sci. Eston. SSR 33, 322–332 (1984).

Other

Yu. N. Denisyuk, “Holography and its prospects,” in Problems in Optical Holography, Yu. N. Denisyuk, ed. (Nauka, Leningrad, 1981), pp. 7–27.

A. Szabo, “Frequency selective optical memory,” U.S. Patent No. 3,896,420 (1975).

G. Castro, D. Haarer, R. M. Macfarlane, H. D. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (1978).

K. K. Rebane, “Laser study of inhomogeneous spectra of molecules in solids,” in Proceedings of the International Conference on Lasers ’82 (STS, McLean, Va., 1982), pp. 340–345.

A. Szabo, in Proceedings of the International Conference on Lasers ’80 (STS, McLean, Va., 1980), pp. 374–379.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of the proposed holographic-recording procedure. Object pulse S(r,t) reaches the hologram plate at the moment t = 0; reference pulse R(r,t) is shown to be delayed, i.e., tR > ts.

Fig. 2
Fig. 2

Relations among spectral widths of 1, inhomogeneous absorption band; 2, reference pulse; 3, object pulse; and 4, homogeneous ZPL linewidth.

Fig. 3
Fig. 3

Diagram showing three different kinds of readout pulses: I, passed-through probe pulse; II, reproduced object pulse; and III, conjugated object pulse. In the case of a three-dimensional hologram, the conjugated object occurs only if the probe pulse is applied in a direction opposite the direction of the reference pulse.

Fig. 4
Fig. 4

Schematic diagram of experimental setup for recording spatially modulated picosecond signals. Beam splitter BS1 divides the expanded input picosecond laser beam between reference and object channels; mirrors M1 and M2 direct the object beam through the transparency T, the Fabry–Perot étalon FP, and the lens L with focal length 2 m; optical delay OD is used to place the reference pulse in the 50-psec intervals between object pulses; movable mirrors M5 and M6 have been inserted to obtain conjugated images by passing the probe pulse in the opposite direction; echo signals are visualized on screens SC1 and SC2. C, cryostat; S, sample; F, neutral-density filter; SH1 and SH2, shutters.

Fig. 5
Fig. 5

a, Streak-camera images of the applied PHB sequence comprising an unsymmetrical object pulse and a reference pulse; b, the passed-through probe pulse followed by the time-reversed PASPE signal. The object pulse was formed by a thin étalon from the laser pulse and has a duration of 50 psec. The apparent 20-psec FWHM of both reference and probe pulses is determined by streak-camera time resolution.

Fig. 6
Fig. 6

Streak-camera images of a, the applied PHB sequence and of the resulting PASPE signals after b, 0.5-mJ/cm2; c, 1.5-mJ/cm2; and d, 2.5-mJ/cm2 PHB exposures. Average intensity of the PHB beam was 0.1 mW/cm2.

Fig. 7
Fig. 7

Photograph images of (a) the pulses used for the PHB and (b) those of echo signals reproduced from the hologram after PHB exposures with the reference pulse applied before the first object pulse, (c) between the first and the second object pulses, (d) between the second and the third object pulses, and (e) between the third and the fourth object pulses.

Fig. 8
Fig. 8

Image of conjugated echo signals photographed from the screen SC2 with the probe pulse passed through the hologram in the opposite direction. For the PHB the reference pulse has been set between (a) the first and the second object pulses and (b) the second and the third object pulses.

Fig. 9
Fig. 9

(a) Distorted object image photographed at the input of the cryostat, (b) reproduced object image obtained after conjugated echo pulses are passed through the distorter in the opposite direction.

Fig. 10
Fig. 10

Image of a coin photographed from the hologram.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S ( r , t ) = s ( x , y , t - z / c ) exp [ i ω 0 ( t - z / c ) ] ,
R ( r , t ) = R 0 δ ( t - n ^ R · r / c - t R ) exp [ i ω 0 ( t - n ^ R · r / c - t R ) ] ,
I ( x , y , ω ) = R 0 2 + s ¯ ( x , y , ω - ω 0 ) 2 + R 0 s ¯ ( x , y , ω - ω 0 ) exp [ - i ω ( x θ / c - t R ) ] + R 0 s ¯ * ( x , y , ω - ω 0 ) exp [ i ω ( x θ / c - t R ) ] ,
( r , ω ) = 0 + ( σ c / 2 π ω ) d ω g ( r , ω ) / ( ω - ω + i T 2 - 1 ) ,
( r , ω ) = 1 - ( σ c / 2 ω ) { i g ( r , ω ) - H ^ [ g ( r , ω ) ] } ,
H ^ [ f ( ω ) ] π - 1 d ω f ( ω ) / ( ω - ω ) .
g ( r , ω ) = g 0 { 1 - m σ η I ( x , y , ω ) exp [ - g 0 σ η ] } ,
K ( x , y , ω ) = exp [ - d ( i ω / c - g 0 σ / 2 ) ] × { 1 + ( κ / 2 ) ( 1 + i H ^ ) [ I ( x , y , ω ) ] } ,
F out ( r , t ) = f 0 ( r , t ) exp [ i ω 0 ( t + x θ / c ) ] + f s ( r , t ) exp [ i ω 0 ( t + t R ) ] + f s * ( r , t ) exp [ i ω 0 ( t - t R + 2 θ x / c ) ] ,
f 0 ( r , t ) = [ 1 / ( R 0 κ ) + R 0 / 2 ] δ ( t + θ x / c ) + R 0 - 1 Y ( t + θ x / c ) × s ( x , y , τ ) s * ( x , y , τ - t - θ x / c ) d τ , f s ( r , t ) = Y ( t + θ x / c ) s ( x , y , t + t R ) , f * s ( r , t ) = Y ( t + θ x / c ) s * ( x , y , t R - t - 2 θ x / c ) .

Metrics