Abstract

Theoretical and experimental studies of photon-echo modulation for the four σ transitions of the R1 line in ruby with an on-axis magnetic field are described. Echoes originating from the Cr3+ ground-state 4A2 (−3/2) spin level (−3/2 echo) are studied for the first time. Unlike ±½ echoes, the −3/2-echo modulation is found to be dominated by Cr–Al interactions occurring outside the 13 inner-shell ions. The +½-echo modulation is observed to be in major disagreement with the theory using previously determined superhyperfine parameters. Regression-analysis studies indicate that this cannot be due solely to parameter errors. Finite nuclear linewidths and/or optical pumping effects are shown to be a plausible source of the disagreement.

© 1986 Optical Society of America

Full Article  |  PDF Article

Corrections

A. Szabo, "On-axis photon-echo modulation in ruby: erratum," J. Opt. Soc. Am. B 3, 1323-1323 (1986)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-3-10-1323

References

  • View by:
  • |
  • |
  • |

  1. E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
    [Crossref]
  2. W. B. Mims, in Electron Paramagnetic Resonance, S. Geschwind, ed. (Plenum, New York, 1972), p. 263.
  3. N. A. Kurnitt, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 15, 567–568 (1964).
    [Crossref]
  4. C. K. N. Patel and R. E. Slusher, “Photon echoes in gases,” Phys. Rev. Lett. 20, 1087–1089 (1968); B. Bolger and J. C. Diels, “Photon echoes in Cs vapor,” Phys. Lett. 28A, 401–402 (1968).
    [Crossref]
  5. L. G. Rowan, E. L. Hahn, and W. B. Mims, “Electron-spin-echo envelope modulation,” Phys. Rev. A 137, 61–71 (1965). For a recent review of electron-paramagnetic-resonance echo modulation, see L. Kevan, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds. (Wiley, New York, 1979), pp. 279–341.
  6. L. Q. Lambert, A. Compaan, and I. D. Abella, “Modulation and fast decay of photon echoes in ruby,” Phys. Lett. 30A, 153–154 (1969); L. Q. Lambert, “Effects of superhyperfine interactions on photon-echo behavior in dilute ruby,” Phys. Rev. B 7, 1834–1846 (1973).
    [Crossref]
  7. D. Grischkowsky and S. R. Hartmann, “Behavior of electron-spin-echoes and photon echoes in high fields,” Phys. Rev. B 2, 60–74 (1970).
    [Crossref]
  8. S. Meth and S. R. Hartmann, “Photon echo modulation in ruby,” Opt. Commun. 24, 100–104 (1978).
    [Crossref]
  9. Y. C. Chen, K. Chiang, and S. R. Hartman, “Spectroscopic and relaxation character of the 3P0–3H4transition in LaF3:Pr3+ measured by photon echoes,” Phys. Rev. B 21, 40–47 (1980), and references therein.
    [Crossref]
  10. J. B. W. Morsink and D. A. Wiersma, “Photon echoes in the 3P0–3H4transition in Pr3+:LaF3,” Chem. Phys. Lett. 65, 105–108 (1967).
    [Crossref]
  11. P. F. Liao and S. R. Hartmann, “Determination of Cr–Al hyper-fine and electric quadrupole interaction parameters in ruby using spin-echo electron-nuclear double resonance,” Phys. Rev. B 8, 69–80 (1973).
    [Crossref]
  12. N. Laurance, E. C. McIrvine, and J. Lambe, “Aluminum hyperfine interactions in ruby,” J. Phys. Chem. Solids 23, 515–531 (1962).
    [Crossref]
  13. E. A. Whittaker and S. R. Hartmann, “Hyperfine structure of the 1D2–3H4levels of Pr3+:LaF3with the use of photon echo modulation spectroscopy,” Phys. Rev. B 26, 3617–3621 (1982).
    [Crossref]
  14. A. Compaan, “Concentration-dependent photon-echo decay in ruby,” Phys. Rev. B 5, 4450–4465 (1972).
    [Crossref]
  15. P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann, “Photon-echo nuclear double resonance and its application in ruby,” Phys. Rev. A 9, 332–340 (1974). The frequency scales in Fig. 6 of this paper are incorrectly drawn. 1 MHz should be subtracted from the values shown.
    [Crossref]
  16. The ground-state point-dipole value for B and the derived value A, for the G A1 set, in Ref. 8 are incorrect. The correct values (Ref. 8) are B= 20.411 (10.411) kHz/nm3 and A= 0.693 (0.988) MHz. Also, the coordinates of one of the I atoms should be −0.2753, 0, −0.0564 (0.139, 0, −0.057) nm. These corrections have a negligible effect on the calculations of Ref. 8.
  17. P. E. Jessop and A. Szabo, “Single frequency cw dye laser operation in the 690–700 nm gap,” IEEE J. Quantum Electron. QE-16, 812–813 (1980).
    [Crossref]
  18. A. Szabo and M. Kroll, “Electric field induced shifting of optical holes, fluorescence line narrowing and free induction decay in ruby,” Opt. Commun. 18, 224–225 (1976); “Stark-induced optical transients in ruby,” Opt. Lett. 2, 10–12 (1978); S. Nakanishi, O. Tamura, T. Muramoto, and T. Hashi, “Observation of various photon echoes and FID in ruby by Stark switching technique,” J. Phys. Soc. Jpn. 45, 1437–1438 (1978).
    [Crossref] [PubMed]
  19. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
    [Crossref]
  20. In this paper, we use the term “dephasing” in the context of a stochastic process. In some earlier work [e.g., D. Grischkowsky and S. R. Hartmann, “Echo behavior in ruby,” Phys. Rev. Lett. 20, 41–43 (1968)] this term was also used in connection with modulation effects. Current usage implies stochastic processes.
    [Crossref]
  21. S. Meth, “Photon echo modulation and photon echo relaxation in ruby,” Ph.D. dissertation (Columbia University, New York, 1977) (unpublished).
  22. S. Lee and C. M. Brodbeck, “Dynamic nuclear polarization method of investigating the correlated ESR and NMR c-axis variation effect in single crystals,” Phys. Rev. B 17, 3484–3491 (1978).
    [Crossref]
  23. We have experimentally confirmed the results of Ref. 8. Also, our computer code gave identical echo-modulation curves.
  24. R. M. Shelby and R. M. Macfarlane, “Frequency-dependent optical dephasing in the stoichiometric material EuP5O14,” Phys. Rev. Lett. 45, 1098–1101 (1980).
    [Crossref]
  25. R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, “Ultraslow optical dephasing of LaF3:Pr3+,” Phys. Rev. Lett. 42, 1560–1563 (1979).
    [Crossref]
  26. A. Szabo, “Spin dependence of optical dephasing in ruby: the frozen core,” Opt. Lett. 8, 486–487 (1983).
    [Crossref] [PubMed]
  27. A. Szabo and J. Chrostowski, “Stimulated on-axis photon echo modulation in ruby,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), pp. 301–308.
  28. A. H. Silver, T. Kushida, and J. Lambe, “Nuclear magnetic dipole coupling in Al2O3,” Phys. Rev. 125, 1147–1149 (1962).
    [Crossref]
  29. W. B. Mims, “Amplitudes of superhyperfine frequencies displayed in the electron-spin-echo envelope,” Phys. Rev. B 6, 3543–3545 (1972).
    [Crossref]

1983 (1)

1982 (1)

E. A. Whittaker and S. R. Hartmann, “Hyperfine structure of the 1D2–3H4levels of Pr3+:LaF3with the use of photon echo modulation spectroscopy,” Phys. Rev. B 26, 3617–3621 (1982).
[Crossref]

1980 (3)

P. E. Jessop and A. Szabo, “Single frequency cw dye laser operation in the 690–700 nm gap,” IEEE J. Quantum Electron. QE-16, 812–813 (1980).
[Crossref]

Y. C. Chen, K. Chiang, and S. R. Hartman, “Spectroscopic and relaxation character of the 3P0–3H4transition in LaF3:Pr3+ measured by photon echoes,” Phys. Rev. B 21, 40–47 (1980), and references therein.
[Crossref]

R. M. Shelby and R. M. Macfarlane, “Frequency-dependent optical dephasing in the stoichiometric material EuP5O14,” Phys. Rev. Lett. 45, 1098–1101 (1980).
[Crossref]

1979 (1)

R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, “Ultraslow optical dephasing of LaF3:Pr3+,” Phys. Rev. Lett. 42, 1560–1563 (1979).
[Crossref]

1978 (2)

S. Lee and C. M. Brodbeck, “Dynamic nuclear polarization method of investigating the correlated ESR and NMR c-axis variation effect in single crystals,” Phys. Rev. B 17, 3484–3491 (1978).
[Crossref]

S. Meth and S. R. Hartmann, “Photon echo modulation in ruby,” Opt. Commun. 24, 100–104 (1978).
[Crossref]

1976 (1)

A. Szabo and M. Kroll, “Electric field induced shifting of optical holes, fluorescence line narrowing and free induction decay in ruby,” Opt. Commun. 18, 224–225 (1976); “Stark-induced optical transients in ruby,” Opt. Lett. 2, 10–12 (1978); S. Nakanishi, O. Tamura, T. Muramoto, and T. Hashi, “Observation of various photon echoes and FID in ruby by Stark switching technique,” J. Phys. Soc. Jpn. 45, 1437–1438 (1978).
[Crossref] [PubMed]

1974 (1)

P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann, “Photon-echo nuclear double resonance and its application in ruby,” Phys. Rev. A 9, 332–340 (1974). The frequency scales in Fig. 6 of this paper are incorrectly drawn. 1 MHz should be subtracted from the values shown.
[Crossref]

1973 (1)

P. F. Liao and S. R. Hartmann, “Determination of Cr–Al hyper-fine and electric quadrupole interaction parameters in ruby using spin-echo electron-nuclear double resonance,” Phys. Rev. B 8, 69–80 (1973).
[Crossref]

1972 (2)

A. Compaan, “Concentration-dependent photon-echo decay in ruby,” Phys. Rev. B 5, 4450–4465 (1972).
[Crossref]

W. B. Mims, “Amplitudes of superhyperfine frequencies displayed in the electron-spin-echo envelope,” Phys. Rev. B 6, 3543–3545 (1972).
[Crossref]

1970 (1)

D. Grischkowsky and S. R. Hartmann, “Behavior of electron-spin-echoes and photon echoes in high fields,” Phys. Rev. B 2, 60–74 (1970).
[Crossref]

1969 (1)

L. Q. Lambert, A. Compaan, and I. D. Abella, “Modulation and fast decay of photon echoes in ruby,” Phys. Lett. 30A, 153–154 (1969); L. Q. Lambert, “Effects of superhyperfine interactions on photon-echo behavior in dilute ruby,” Phys. Rev. B 7, 1834–1846 (1973).
[Crossref]

1968 (2)

C. K. N. Patel and R. E. Slusher, “Photon echoes in gases,” Phys. Rev. Lett. 20, 1087–1089 (1968); B. Bolger and J. C. Diels, “Photon echoes in Cs vapor,” Phys. Lett. 28A, 401–402 (1968).
[Crossref]

In this paper, we use the term “dephasing” in the context of a stochastic process. In some earlier work [e.g., D. Grischkowsky and S. R. Hartmann, “Echo behavior in ruby,” Phys. Rev. Lett. 20, 41–43 (1968)] this term was also used in connection with modulation effects. Current usage implies stochastic processes.
[Crossref]

1967 (1)

J. B. W. Morsink and D. A. Wiersma, “Photon echoes in the 3P0–3H4transition in Pr3+:LaF3,” Chem. Phys. Lett. 65, 105–108 (1967).
[Crossref]

1965 (1)

L. G. Rowan, E. L. Hahn, and W. B. Mims, “Electron-spin-echo envelope modulation,” Phys. Rev. A 137, 61–71 (1965). For a recent review of electron-paramagnetic-resonance echo modulation, see L. Kevan, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds. (Wiley, New York, 1979), pp. 279–341.

1964 (1)

N. A. Kurnitt, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 15, 567–568 (1964).
[Crossref]

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
[Crossref]

1962 (2)

N. Laurance, E. C. McIrvine, and J. Lambe, “Aluminum hyperfine interactions in ruby,” J. Phys. Chem. Solids 23, 515–531 (1962).
[Crossref]

A. H. Silver, T. Kushida, and J. Lambe, “Nuclear magnetic dipole coupling in Al2O3,” Phys. Rev. 125, 1147–1149 (1962).
[Crossref]

1950 (1)

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[Crossref]

Abella, I. D.

L. Q. Lambert, A. Compaan, and I. D. Abella, “Modulation and fast decay of photon echoes in ruby,” Phys. Lett. 30A, 153–154 (1969); L. Q. Lambert, “Effects of superhyperfine interactions on photon-echo behavior in dilute ruby,” Phys. Rev. B 7, 1834–1846 (1973).
[Crossref]

N. A. Kurnitt, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 15, 567–568 (1964).
[Crossref]

Brewer, R. G.

R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, “Ultraslow optical dephasing of LaF3:Pr3+,” Phys. Rev. Lett. 42, 1560–1563 (1979).
[Crossref]

Brodbeck, C. M.

S. Lee and C. M. Brodbeck, “Dynamic nuclear polarization method of investigating the correlated ESR and NMR c-axis variation effect in single crystals,” Phys. Rev. B 17, 3484–3491 (1978).
[Crossref]

Chen, Y. C.

Y. C. Chen, K. Chiang, and S. R. Hartman, “Spectroscopic and relaxation character of the 3P0–3H4transition in LaF3:Pr3+ measured by photon echoes,” Phys. Rev. B 21, 40–47 (1980), and references therein.
[Crossref]

Chiang, K.

Y. C. Chen, K. Chiang, and S. R. Hartman, “Spectroscopic and relaxation character of the 3P0–3H4transition in LaF3:Pr3+ measured by photon echoes,” Phys. Rev. B 21, 40–47 (1980), and references therein.
[Crossref]

Chrostowski, J.

A. Szabo and J. Chrostowski, “Stimulated on-axis photon echo modulation in ruby,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), pp. 301–308.

Compaan, A.

A. Compaan, “Concentration-dependent photon-echo decay in ruby,” Phys. Rev. B 5, 4450–4465 (1972).
[Crossref]

L. Q. Lambert, A. Compaan, and I. D. Abella, “Modulation and fast decay of photon echoes in ruby,” Phys. Lett. 30A, 153–154 (1969); L. Q. Lambert, “Effects of superhyperfine interactions on photon-echo behavior in dilute ruby,” Phys. Rev. B 7, 1834–1846 (1973).
[Crossref]

DeVoe, R. G.

R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, “Ultraslow optical dephasing of LaF3:Pr3+,” Phys. Rev. Lett. 42, 1560–1563 (1979).
[Crossref]

Grischkowsky, D.

D. Grischkowsky and S. R. Hartmann, “Behavior of electron-spin-echoes and photon echoes in high fields,” Phys. Rev. B 2, 60–74 (1970).
[Crossref]

In this paper, we use the term “dephasing” in the context of a stochastic process. In some earlier work [e.g., D. Grischkowsky and S. R. Hartmann, “Echo behavior in ruby,” Phys. Rev. Lett. 20, 41–43 (1968)] this term was also used in connection with modulation effects. Current usage implies stochastic processes.
[Crossref]

Hahn, E. L.

L. G. Rowan, E. L. Hahn, and W. B. Mims, “Electron-spin-echo envelope modulation,” Phys. Rev. A 137, 61–71 (1965). For a recent review of electron-paramagnetic-resonance echo modulation, see L. Kevan, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds. (Wiley, New York, 1979), pp. 279–341.

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[Crossref]

Hartman, S. R.

Y. C. Chen, K. Chiang, and S. R. Hartman, “Spectroscopic and relaxation character of the 3P0–3H4transition in LaF3:Pr3+ measured by photon echoes,” Phys. Rev. B 21, 40–47 (1980), and references therein.
[Crossref]

Hartmann, S. R.

E. A. Whittaker and S. R. Hartmann, “Hyperfine structure of the 1D2–3H4levels of Pr3+:LaF3with the use of photon echo modulation spectroscopy,” Phys. Rev. B 26, 3617–3621 (1982).
[Crossref]

S. Meth and S. R. Hartmann, “Photon echo modulation in ruby,” Opt. Commun. 24, 100–104 (1978).
[Crossref]

P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann, “Photon-echo nuclear double resonance and its application in ruby,” Phys. Rev. A 9, 332–340 (1974). The frequency scales in Fig. 6 of this paper are incorrectly drawn. 1 MHz should be subtracted from the values shown.
[Crossref]

P. F. Liao and S. R. Hartmann, “Determination of Cr–Al hyper-fine and electric quadrupole interaction parameters in ruby using spin-echo electron-nuclear double resonance,” Phys. Rev. B 8, 69–80 (1973).
[Crossref]

D. Grischkowsky and S. R. Hartmann, “Behavior of electron-spin-echoes and photon echoes in high fields,” Phys. Rev. B 2, 60–74 (1970).
[Crossref]

In this paper, we use the term “dephasing” in the context of a stochastic process. In some earlier work [e.g., D. Grischkowsky and S. R. Hartmann, “Echo behavior in ruby,” Phys. Rev. Lett. 20, 41–43 (1968)] this term was also used in connection with modulation effects. Current usage implies stochastic processes.
[Crossref]

N. A. Kurnitt, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 15, 567–568 (1964).
[Crossref]

Hu, P.

P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann, “Photon-echo nuclear double resonance and its application in ruby,” Phys. Rev. A 9, 332–340 (1974). The frequency scales in Fig. 6 of this paper are incorrectly drawn. 1 MHz should be subtracted from the values shown.
[Crossref]

Jessop, P. E.

P. E. Jessop and A. Szabo, “Single frequency cw dye laser operation in the 690–700 nm gap,” IEEE J. Quantum Electron. QE-16, 812–813 (1980).
[Crossref]

Kroll, M.

A. Szabo and M. Kroll, “Electric field induced shifting of optical holes, fluorescence line narrowing and free induction decay in ruby,” Opt. Commun. 18, 224–225 (1976); “Stark-induced optical transients in ruby,” Opt. Lett. 2, 10–12 (1978); S. Nakanishi, O. Tamura, T. Muramoto, and T. Hashi, “Observation of various photon echoes and FID in ruby by Stark switching technique,” J. Phys. Soc. Jpn. 45, 1437–1438 (1978).
[Crossref] [PubMed]

Kurnitt, N. A.

N. A. Kurnitt, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 15, 567–568 (1964).
[Crossref]

Kushida, T.

A. H. Silver, T. Kushida, and J. Lambe, “Nuclear magnetic dipole coupling in Al2O3,” Phys. Rev. 125, 1147–1149 (1962).
[Crossref]

Lambe, J.

A. H. Silver, T. Kushida, and J. Lambe, “Nuclear magnetic dipole coupling in Al2O3,” Phys. Rev. 125, 1147–1149 (1962).
[Crossref]

N. Laurance, E. C. McIrvine, and J. Lambe, “Aluminum hyperfine interactions in ruby,” J. Phys. Chem. Solids 23, 515–531 (1962).
[Crossref]

Lambert, L. Q.

L. Q. Lambert, A. Compaan, and I. D. Abella, “Modulation and fast decay of photon echoes in ruby,” Phys. Lett. 30A, 153–154 (1969); L. Q. Lambert, “Effects of superhyperfine interactions on photon-echo behavior in dilute ruby,” Phys. Rev. B 7, 1834–1846 (1973).
[Crossref]

Laurance, N.

N. Laurance, E. C. McIrvine, and J. Lambe, “Aluminum hyperfine interactions in ruby,” J. Phys. Chem. Solids 23, 515–531 (1962).
[Crossref]

Lee, S.

S. Lee and C. M. Brodbeck, “Dynamic nuclear polarization method of investigating the correlated ESR and NMR c-axis variation effect in single crystals,” Phys. Rev. B 17, 3484–3491 (1978).
[Crossref]

Leigh, R.

P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann, “Photon-echo nuclear double resonance and its application in ruby,” Phys. Rev. A 9, 332–340 (1974). The frequency scales in Fig. 6 of this paper are incorrectly drawn. 1 MHz should be subtracted from the values shown.
[Crossref]

Liao, P. F.

P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann, “Photon-echo nuclear double resonance and its application in ruby,” Phys. Rev. A 9, 332–340 (1974). The frequency scales in Fig. 6 of this paper are incorrectly drawn. 1 MHz should be subtracted from the values shown.
[Crossref]

P. F. Liao and S. R. Hartmann, “Determination of Cr–Al hyper-fine and electric quadrupole interaction parameters in ruby using spin-echo electron-nuclear double resonance,” Phys. Rev. B 8, 69–80 (1973).
[Crossref]

Macfarlane, R. M.

R. M. Shelby and R. M. Macfarlane, “Frequency-dependent optical dephasing in the stoichiometric material EuP5O14,” Phys. Rev. Lett. 45, 1098–1101 (1980).
[Crossref]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
[Crossref]

McIrvine, E. C.

N. Laurance, E. C. McIrvine, and J. Lambe, “Aluminum hyperfine interactions in ruby,” J. Phys. Chem. Solids 23, 515–531 (1962).
[Crossref]

Meth, S.

S. Meth and S. R. Hartmann, “Photon echo modulation in ruby,” Opt. Commun. 24, 100–104 (1978).
[Crossref]

S. Meth, “Photon echo modulation and photon echo relaxation in ruby,” Ph.D. dissertation (Columbia University, New York, 1977) (unpublished).

Mims, W. B.

W. B. Mims, “Amplitudes of superhyperfine frequencies displayed in the electron-spin-echo envelope,” Phys. Rev. B 6, 3543–3545 (1972).
[Crossref]

L. G. Rowan, E. L. Hahn, and W. B. Mims, “Electron-spin-echo envelope modulation,” Phys. Rev. A 137, 61–71 (1965). For a recent review of electron-paramagnetic-resonance echo modulation, see L. Kevan, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds. (Wiley, New York, 1979), pp. 279–341.

W. B. Mims, in Electron Paramagnetic Resonance, S. Geschwind, ed. (Plenum, New York, 1972), p. 263.

Morsink, J. B. W.

J. B. W. Morsink and D. A. Wiersma, “Photon echoes in the 3P0–3H4transition in Pr3+:LaF3,” Chem. Phys. Lett. 65, 105–108 (1967).
[Crossref]

Patel, C. K. N.

C. K. N. Patel and R. E. Slusher, “Photon echoes in gases,” Phys. Rev. Lett. 20, 1087–1089 (1968); B. Bolger and J. C. Diels, “Photon echoes in Cs vapor,” Phys. Lett. 28A, 401–402 (1968).
[Crossref]

Rand, S. C.

R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, “Ultraslow optical dephasing of LaF3:Pr3+,” Phys. Rev. Lett. 42, 1560–1563 (1979).
[Crossref]

Rowan, L. G.

L. G. Rowan, E. L. Hahn, and W. B. Mims, “Electron-spin-echo envelope modulation,” Phys. Rev. A 137, 61–71 (1965). For a recent review of electron-paramagnetic-resonance echo modulation, see L. Kevan, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds. (Wiley, New York, 1979), pp. 279–341.

Shelby, R. M.

R. M. Shelby and R. M. Macfarlane, “Frequency-dependent optical dephasing in the stoichiometric material EuP5O14,” Phys. Rev. Lett. 45, 1098–1101 (1980).
[Crossref]

Silver, A. H.

A. H. Silver, T. Kushida, and J. Lambe, “Nuclear magnetic dipole coupling in Al2O3,” Phys. Rev. 125, 1147–1149 (1962).
[Crossref]

Slusher, R. E.

C. K. N. Patel and R. E. Slusher, “Photon echoes in gases,” Phys. Rev. Lett. 20, 1087–1089 (1968); B. Bolger and J. C. Diels, “Photon echoes in Cs vapor,” Phys. Lett. 28A, 401–402 (1968).
[Crossref]

Szabo, A.

A. Szabo, “Spin dependence of optical dephasing in ruby: the frozen core,” Opt. Lett. 8, 486–487 (1983).
[Crossref] [PubMed]

P. E. Jessop and A. Szabo, “Single frequency cw dye laser operation in the 690–700 nm gap,” IEEE J. Quantum Electron. QE-16, 812–813 (1980).
[Crossref]

R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, “Ultraslow optical dephasing of LaF3:Pr3+,” Phys. Rev. Lett. 42, 1560–1563 (1979).
[Crossref]

A. Szabo and M. Kroll, “Electric field induced shifting of optical holes, fluorescence line narrowing and free induction decay in ruby,” Opt. Commun. 18, 224–225 (1976); “Stark-induced optical transients in ruby,” Opt. Lett. 2, 10–12 (1978); S. Nakanishi, O. Tamura, T. Muramoto, and T. Hashi, “Observation of various photon echoes and FID in ruby by Stark switching technique,” J. Phys. Soc. Jpn. 45, 1437–1438 (1978).
[Crossref] [PubMed]

A. Szabo and J. Chrostowski, “Stimulated on-axis photon echo modulation in ruby,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), pp. 301–308.

Whittaker, E. A.

E. A. Whittaker and S. R. Hartmann, “Hyperfine structure of the 1D2–3H4levels of Pr3+:LaF3with the use of photon echo modulation spectroscopy,” Phys. Rev. B 26, 3617–3621 (1982).
[Crossref]

Wiersma, D. A.

J. B. W. Morsink and D. A. Wiersma, “Photon echoes in the 3P0–3H4transition in Pr3+:LaF3,” Chem. Phys. Lett. 65, 105–108 (1967).
[Crossref]

Chem. Phys. Lett. (1)

J. B. W. Morsink and D. A. Wiersma, “Photon echoes in the 3P0–3H4transition in Pr3+:LaF3,” Chem. Phys. Lett. 65, 105–108 (1967).
[Crossref]

IEEE J. Quantum Electron. (1)

P. E. Jessop and A. Szabo, “Single frequency cw dye laser operation in the 690–700 nm gap,” IEEE J. Quantum Electron. QE-16, 812–813 (1980).
[Crossref]

J. Phys. Chem. Solids (1)

N. Laurance, E. C. McIrvine, and J. Lambe, “Aluminum hyperfine interactions in ruby,” J. Phys. Chem. Solids 23, 515–531 (1962).
[Crossref]

J. Soc. Indust. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963).
[Crossref]

Opt. Commun. (2)

A. Szabo and M. Kroll, “Electric field induced shifting of optical holes, fluorescence line narrowing and free induction decay in ruby,” Opt. Commun. 18, 224–225 (1976); “Stark-induced optical transients in ruby,” Opt. Lett. 2, 10–12 (1978); S. Nakanishi, O. Tamura, T. Muramoto, and T. Hashi, “Observation of various photon echoes and FID in ruby by Stark switching technique,” J. Phys. Soc. Jpn. 45, 1437–1438 (1978).
[Crossref] [PubMed]

S. Meth and S. R. Hartmann, “Photon echo modulation in ruby,” Opt. Commun. 24, 100–104 (1978).
[Crossref]

Opt. Lett. (1)

Phys. Lett. (1)

L. Q. Lambert, A. Compaan, and I. D. Abella, “Modulation and fast decay of photon echoes in ruby,” Phys. Lett. 30A, 153–154 (1969); L. Q. Lambert, “Effects of superhyperfine interactions on photon-echo behavior in dilute ruby,” Phys. Rev. B 7, 1834–1846 (1973).
[Crossref]

Phys. Rev. (2)

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[Crossref]

A. H. Silver, T. Kushida, and J. Lambe, “Nuclear magnetic dipole coupling in Al2O3,” Phys. Rev. 125, 1147–1149 (1962).
[Crossref]

Phys. Rev. A (2)

L. G. Rowan, E. L. Hahn, and W. B. Mims, “Electron-spin-echo envelope modulation,” Phys. Rev. A 137, 61–71 (1965). For a recent review of electron-paramagnetic-resonance echo modulation, see L. Kevan, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds. (Wiley, New York, 1979), pp. 279–341.

P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann, “Photon-echo nuclear double resonance and its application in ruby,” Phys. Rev. A 9, 332–340 (1974). The frequency scales in Fig. 6 of this paper are incorrectly drawn. 1 MHz should be subtracted from the values shown.
[Crossref]

Phys. Rev. B (7)

E. A. Whittaker and S. R. Hartmann, “Hyperfine structure of the 1D2–3H4levels of Pr3+:LaF3with the use of photon echo modulation spectroscopy,” Phys. Rev. B 26, 3617–3621 (1982).
[Crossref]

A. Compaan, “Concentration-dependent photon-echo decay in ruby,” Phys. Rev. B 5, 4450–4465 (1972).
[Crossref]

P. F. Liao and S. R. Hartmann, “Determination of Cr–Al hyper-fine and electric quadrupole interaction parameters in ruby using spin-echo electron-nuclear double resonance,” Phys. Rev. B 8, 69–80 (1973).
[Crossref]

D. Grischkowsky and S. R. Hartmann, “Behavior of electron-spin-echoes and photon echoes in high fields,” Phys. Rev. B 2, 60–74 (1970).
[Crossref]

Y. C. Chen, K. Chiang, and S. R. Hartman, “Spectroscopic and relaxation character of the 3P0–3H4transition in LaF3:Pr3+ measured by photon echoes,” Phys. Rev. B 21, 40–47 (1980), and references therein.
[Crossref]

W. B. Mims, “Amplitudes of superhyperfine frequencies displayed in the electron-spin-echo envelope,” Phys. Rev. B 6, 3543–3545 (1972).
[Crossref]

S. Lee and C. M. Brodbeck, “Dynamic nuclear polarization method of investigating the correlated ESR and NMR c-axis variation effect in single crystals,” Phys. Rev. B 17, 3484–3491 (1978).
[Crossref]

Phys. Rev. Lett. (5)

In this paper, we use the term “dephasing” in the context of a stochastic process. In some earlier work [e.g., D. Grischkowsky and S. R. Hartmann, “Echo behavior in ruby,” Phys. Rev. Lett. 20, 41–43 (1968)] this term was also used in connection with modulation effects. Current usage implies stochastic processes.
[Crossref]

R. M. Shelby and R. M. Macfarlane, “Frequency-dependent optical dephasing in the stoichiometric material EuP5O14,” Phys. Rev. Lett. 45, 1098–1101 (1980).
[Crossref]

R. G. DeVoe, A. Szabo, S. C. Rand, and R. G. Brewer, “Ultraslow optical dephasing of LaF3:Pr3+,” Phys. Rev. Lett. 42, 1560–1563 (1979).
[Crossref]

N. A. Kurnitt, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 15, 567–568 (1964).
[Crossref]

C. K. N. Patel and R. E. Slusher, “Photon echoes in gases,” Phys. Rev. Lett. 20, 1087–1089 (1968); B. Bolger and J. C. Diels, “Photon echoes in Cs vapor,” Phys. Lett. 28A, 401–402 (1968).
[Crossref]

Other (5)

W. B. Mims, in Electron Paramagnetic Resonance, S. Geschwind, ed. (Plenum, New York, 1972), p. 263.

The ground-state point-dipole value for B and the derived value A, for the G A1 set, in Ref. 8 are incorrect. The correct values (Ref. 8) are B= 20.411 (10.411) kHz/nm3 and A= 0.693 (0.988) MHz. Also, the coordinates of one of the I atoms should be −0.2753, 0, −0.0564 (0.139, 0, −0.057) nm. These corrections have a negligible effect on the calculations of Ref. 8.

A. Szabo and J. Chrostowski, “Stimulated on-axis photon echo modulation in ruby,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), pp. 301–308.

S. Meth, “Photon echo modulation and photon echo relaxation in ruby,” Ph.D. dissertation (Columbia University, New York, 1977) (unpublished).

We have experimentally confirmed the results of Ref. 8. Also, our computer code gave identical echo-modulation curves.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Energy levels of the optical R1 line (693.4 nm) of Cr3+ in ruby in a magnetic field (|| C3 axis) showing four circularly polarized transitions studied. The ground-state level crossing at 2.069 kG was used for absolute field calibration.

Fig. 2
Fig. 2

Experimental setup for photon-echo studies.

Fig. 3
Fig. 3

Theory versus experiment for −½ echo at 1.405 kG. MD, 18%; dephasing time, 5.19 μsec. Vertical scale for all plots in arbitrary units. For clarity, not all experimental points are shown in this and later plots.

Fig. 4
Fig. 4

Theory versus experiment for −3/2 echo at 1.740 kG. MD, 23% (375 Al ions); dephasing time, 5.06 μsec.

Fig. 5
Fig. 5

Theory versus experiment for −3/2 echo at 2.272 kG. MD, 25% (375 Al ions); dephasing time, 6.51 μsec. For clarity, the data have been split into three time regions: 0–3, 3–6, and 6–9 μsec, as indicated on the plots. The curves are arbitrarily displaced vertically.

Fig. 6
Fig. 6

Theoretical plot for +3/2 echo at 4.0 kG. Dephasing time, infinite. Vertical scale in arbitrary units. The dc level indicates the time-independent part of the echo.

Fig. 7
Fig. 7

Theory versus experiment for +½ echo at 1.420 kG. MD, 265%; dephasing time, 2.38 μsec.

Fig. 8
Fig. 8

Theory versus experiment for +½ echo at 1.600 kG. MD, 81%; dephasing time, 4.16 μsec.

Fig. 9
Fig. 9

Regression-analysis fit of theory to experiment for +½ echo at 1.420 kG. Excited-state superhyperfine parameters are regressed for 12 nearest-neighbor Al (28 parameters) plus slope and height of theoretical (log) plot. MD, 5.6%; see Table 1.

Fig. 10
Fig. 10

Regression-analysis fit of theory to experiment for +½ echo at 1.420 kG. Ground-state populations are regressed for 12 nearest-neighbor Al (24 parameters) plus height and slope of theoretical (log) plot. MD, 41%; see Table 2.

Fig. 11
Fig. 11

Regression-analysis fit of theory to experiment for +½ echo at 1.420 kG. Ground and excited linewidths are regressed for 12 nearest-neighbor Al (8 parameters) plus height and slope of theoretical (log) plot. For a given Al ion set, all ground (excited) linewidths are assumed to be the same. MD, 17%; see Table 3.

Tables (3)

Tables Icon

Table 1 Excited-State Superhyperfine Parameters Obtained by Regression-Analysis Fit of +½-Echo Data at 1.42 kG

Tables Icon

Table 2 Ground-State Occupation Probabilities Obtained by Regression-Analysis Fit of +½-Echo Data at 1.42 kG

Tables Icon

Table 3 Nuclear Linewidths Obtained by Regression-Analysis Fit of +½-Echo Data at 1.42 kG

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

H n = - γ n H I z + S z [ ( A + B z ) I z + B t I α ] + Q exp [ - i θ 1 I β ) ] exp [ - ( i θ 2 I α ) ] × exp [ - ( i θ 3 I z ) ] [ I z 2 + ( η / 3 ) ( I α 2 - I β 2 ) ] × c . c .
B z = B ( 3 z 2 - r 2 ) / r 5
B t = 3 B z ( x 2 + y 2 ) 1 / 2 / r 5 ,
I t = A I 0 exp [ - ( 4 t / T 2 ) ] ,
MD = ( 1 / N ) N ( I exp - I t ) / I t × 100 % ,
H eff = ( 2 π / γ ) { [ ( γ / 2 π ) H - ( A + B z ) S z ] z + [ B t S z ] t } ,
Tr C = K , L , M , N = 1 6 N K P K L M N cos ( ω K L M N t ) ,
Tr C = [ 1 / ( 2 I + 1 ) ] K , L , M , N = 1 6 exp [ - ( Ω K M + Ω L N ) t ] × P K L M N cos ( ω K L M N t ) ,
E ( 2 t ) = E ( 0 ) Re j Tr C j ,
Tr C = [ 1 / ( 2 I + 2 ) ] K , L , M , N = 1 6 P K L M N cos ( ω K L M N t ) ,
P K L M N = W K L W M L * W M N W K N *
ω K L M N = - 1 [ ( E K - E M ) g + ( E L - E N ) e ] = ω K M g + ω L N e .
T 1 [ P K L M N cos ( ω K L M N t ) ] = P K L M N cos ( ω K L M N t )
T 2 P K L M N * = P K L M N = T 3 P K L M N * .
C 0 ( 1 / 6 ) K , L = 1 6 P K K L L .
C 1 ( t ) ( 1 / 3 ) L = 1 , N = L + 1 5 , 6 ( K = 1 6 P K L K N ) cos ( ω L N e t ) .
C 2 ( t ) ( 1 / 3 ) K = 1 , M = K + 1 5 , 6 ( L = 1 6 P K L M L ) cos ( ω K M g t ) .
C 3 r ( t ) ( 2 / 3 ) Re [ K = 1 , M = K + 1 , L = 1 , N = L + 1 5 , 6 , 5 , 6 P K L M N × cos ( ω K M g t ) cos ( ω L N e t ) ] ,
C 3 i ( t ) - ( 2 / 3 ) Im [ K = 1 , M = K + 1 , L = 1 , N = L + 1 5 , 6 , 5 , 6 P K L M N × sin ( ω K M g t ) sin ( ω L N e t ) ] .

Metrics