Abstract

A novel observation of photon locking—the optical analog of spin locking—is reported, demonstrating the applicability of phase-coherent pulse sequences. The experiments are reported for the optical transition of iodine gas at 589.7 nm using the pulse sequence XYXXY X¯. Locking decay rates are presented as a function of pressure and compared with optical dephasing (echo-decay) rates.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5956 (1981); J. Chem. Phys. 78, 2279 (1983).
    [CrossRef]
  2. A. G. Redfield, Phys. Rev. 98, 1787 (1955).
    [CrossRef]
  3. A. H. Zewail, T. E. Orlowski, K. E. Jones, D. E. Godar, Chem. Phys. Lett. 48, 256 (1977); T. E. Orlowski, K. E. Jones, A. H. Zewail, Chem. Phys. Lett. 54, 197 (1978).
    [CrossRef]
  4. T. E. Orlowski, A. H. Zewail, J. Chem. Phys. 70, 1390 (1979).
    [CrossRef]
  5. W. F. Giauque, J. Am. Chem. Soc. 53, 507 (1931).
    [CrossRef]
  6. R. P. Feynman, F. L. Vernon, R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).
    [CrossRef]
  7. R. Freeman, S. P. Kempsell, M. H. Levitt, J. Magn. Reson. 38, 453 (1980); M. H. Levitt, R. Freeman, J. Magn. Reson. 43, 502 (1981); M. H. Levitt, R. Freeman, T. Frenkel, J. Magn. Reson. 47, 328 (1982).
  8. R. G. DeVoe, R. G. Brewer, Phys. Rev. Lett. 50, 1269 (1983); A. Schenzle, M. Mitsunaga, R. G. DeVoe, R. G. Brewer, Phys. Rev. A 30, 325 (1984).
    [CrossRef]
  9. R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1979).
    [CrossRef]
  10. E. T. Sleva, A. H. Zewail, Chem. Phys. Lett. 110, 582 (1984).
    [CrossRef]
  11. N. W. Carlson, W. R. Babbit, Y. S. Bai, T. W. Mossberg, Opt. Lett. 9, 232 (1984); P. F. Liao, S. R. Hartmann, Phys. Lett. 44A, 361 (1973).
    [CrossRef] [PubMed]
  12. A. G. Yodh, J. Golub, N. W. Carlson, T. W. Mossberg, Phys. Rev. Lett. 53, 659 (1984).
    [CrossRef]
  13. At present, accurate error estimates are difficult to obtain because of single-mode instability, particularly at long times. However, the reproducibility of all pressure-dependence data was verified.
  14. M. A. Banash, J. Gutow, W. S. Warren, J. Lumin. 31–32, 855 (1984).
    [CrossRef]
  15. E. T. Sleva, A. H. Zewail, J. Phys. Chem. (to be published).

1984 (4)

E. T. Sleva, A. H. Zewail, Chem. Phys. Lett. 110, 582 (1984).
[CrossRef]

A. G. Yodh, J. Golub, N. W. Carlson, T. W. Mossberg, Phys. Rev. Lett. 53, 659 (1984).
[CrossRef]

M. A. Banash, J. Gutow, W. S. Warren, J. Lumin. 31–32, 855 (1984).
[CrossRef]

N. W. Carlson, W. R. Babbit, Y. S. Bai, T. W. Mossberg, Opt. Lett. 9, 232 (1984); P. F. Liao, S. R. Hartmann, Phys. Lett. 44A, 361 (1973).
[CrossRef] [PubMed]

1983 (1)

R. G. DeVoe, R. G. Brewer, Phys. Rev. Lett. 50, 1269 (1983); A. Schenzle, M. Mitsunaga, R. G. DeVoe, R. G. Brewer, Phys. Rev. A 30, 325 (1984).
[CrossRef]

1981 (1)

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5956 (1981); J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

1980 (1)

R. Freeman, S. P. Kempsell, M. H. Levitt, J. Magn. Reson. 38, 453 (1980); M. H. Levitt, R. Freeman, J. Magn. Reson. 43, 502 (1981); M. H. Levitt, R. Freeman, T. Frenkel, J. Magn. Reson. 47, 328 (1982).

1979 (2)

T. E. Orlowski, A. H. Zewail, J. Chem. Phys. 70, 1390 (1979).
[CrossRef]

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1979).
[CrossRef]

1977 (1)

A. H. Zewail, T. E. Orlowski, K. E. Jones, D. E. Godar, Chem. Phys. Lett. 48, 256 (1977); T. E. Orlowski, K. E. Jones, A. H. Zewail, Chem. Phys. Lett. 54, 197 (1978).
[CrossRef]

1957 (1)

R. P. Feynman, F. L. Vernon, R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).
[CrossRef]

1955 (1)

A. G. Redfield, Phys. Rev. 98, 1787 (1955).
[CrossRef]

1931 (1)

W. F. Giauque, J. Am. Chem. Soc. 53, 507 (1931).
[CrossRef]

Babbit, W. R.

Bai, Y. S.

Banash, M. A.

M. A. Banash, J. Gutow, W. S. Warren, J. Lumin. 31–32, 855 (1984).
[CrossRef]

Brewer, R. G.

R. G. DeVoe, R. G. Brewer, Phys. Rev. Lett. 50, 1269 (1983); A. Schenzle, M. Mitsunaga, R. G. DeVoe, R. G. Brewer, Phys. Rev. A 30, 325 (1984).
[CrossRef]

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1979).
[CrossRef]

Carlson, N. W.

DeVoe, R. G.

R. G. DeVoe, R. G. Brewer, Phys. Rev. Lett. 50, 1269 (1983); A. Schenzle, M. Mitsunaga, R. G. DeVoe, R. G. Brewer, Phys. Rev. A 30, 325 (1984).
[CrossRef]

Feynman, R. P.

R. P. Feynman, F. L. Vernon, R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).
[CrossRef]

Freeman, R.

R. Freeman, S. P. Kempsell, M. H. Levitt, J. Magn. Reson. 38, 453 (1980); M. H. Levitt, R. Freeman, J. Magn. Reson. 43, 502 (1981); M. H. Levitt, R. Freeman, T. Frenkel, J. Magn. Reson. 47, 328 (1982).

Genack, A. Z.

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1979).
[CrossRef]

Giauque, W. F.

W. F. Giauque, J. Am. Chem. Soc. 53, 507 (1931).
[CrossRef]

Godar, D. E.

A. H. Zewail, T. E. Orlowski, K. E. Jones, D. E. Godar, Chem. Phys. Lett. 48, 256 (1977); T. E. Orlowski, K. E. Jones, A. H. Zewail, Chem. Phys. Lett. 54, 197 (1978).
[CrossRef]

Golub, J.

A. G. Yodh, J. Golub, N. W. Carlson, T. W. Mossberg, Phys. Rev. Lett. 53, 659 (1984).
[CrossRef]

Gutow, J.

M. A. Banash, J. Gutow, W. S. Warren, J. Lumin. 31–32, 855 (1984).
[CrossRef]

Hellwarth, R. W.

R. P. Feynman, F. L. Vernon, R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).
[CrossRef]

Jones, K. E.

A. H. Zewail, T. E. Orlowski, K. E. Jones, D. E. Godar, Chem. Phys. Lett. 48, 256 (1977); T. E. Orlowski, K. E. Jones, A. H. Zewail, Chem. Phys. Lett. 54, 197 (1978).
[CrossRef]

Kempsell, S. P.

R. Freeman, S. P. Kempsell, M. H. Levitt, J. Magn. Reson. 38, 453 (1980); M. H. Levitt, R. Freeman, J. Magn. Reson. 43, 502 (1981); M. H. Levitt, R. Freeman, T. Frenkel, J. Magn. Reson. 47, 328 (1982).

Levitt, M. H.

R. Freeman, S. P. Kempsell, M. H. Levitt, J. Magn. Reson. 38, 453 (1980); M. H. Levitt, R. Freeman, J. Magn. Reson. 43, 502 (1981); M. H. Levitt, R. Freeman, T. Frenkel, J. Magn. Reson. 47, 328 (1982).

Mossberg, T. W.

Orlowski, T. E.

T. E. Orlowski, A. H. Zewail, J. Chem. Phys. 70, 1390 (1979).
[CrossRef]

A. H. Zewail, T. E. Orlowski, K. E. Jones, D. E. Godar, Chem. Phys. Lett. 48, 256 (1977); T. E. Orlowski, K. E. Jones, A. H. Zewail, Chem. Phys. Lett. 54, 197 (1978).
[CrossRef]

Redfield, A. G.

A. G. Redfield, Phys. Rev. 98, 1787 (1955).
[CrossRef]

Sleva, E. T.

E. T. Sleva, A. H. Zewail, Chem. Phys. Lett. 110, 582 (1984).
[CrossRef]

E. T. Sleva, A. H. Zewail, J. Phys. Chem. (to be published).

Vernon, F. L.

R. P. Feynman, F. L. Vernon, R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).
[CrossRef]

Warren, W. S.

M. A. Banash, J. Gutow, W. S. Warren, J. Lumin. 31–32, 855 (1984).
[CrossRef]

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5956 (1981); J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

Yodh, A. G.

A. G. Yodh, J. Golub, N. W. Carlson, T. W. Mossberg, Phys. Rev. Lett. 53, 659 (1984).
[CrossRef]

Zewail, A. H.

E. T. Sleva, A. H. Zewail, Chem. Phys. Lett. 110, 582 (1984).
[CrossRef]

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5956 (1981); J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

T. E. Orlowski, A. H. Zewail, J. Chem. Phys. 70, 1390 (1979).
[CrossRef]

A. H. Zewail, T. E. Orlowski, K. E. Jones, D. E. Godar, Chem. Phys. Lett. 48, 256 (1977); T. E. Orlowski, K. E. Jones, A. H. Zewail, Chem. Phys. Lett. 54, 197 (1978).
[CrossRef]

E. T. Sleva, A. H. Zewail, J. Phys. Chem. (to be published).

Chem. Phys. Lett. (2)

A. H. Zewail, T. E. Orlowski, K. E. Jones, D. E. Godar, Chem. Phys. Lett. 48, 256 (1977); T. E. Orlowski, K. E. Jones, A. H. Zewail, Chem. Phys. Lett. 54, 197 (1978).
[CrossRef]

E. T. Sleva, A. H. Zewail, Chem. Phys. Lett. 110, 582 (1984).
[CrossRef]

J. Am. Chem. Soc. (1)

W. F. Giauque, J. Am. Chem. Soc. 53, 507 (1931).
[CrossRef]

J. Appl. Phys. (1)

R. P. Feynman, F. L. Vernon, R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).
[CrossRef]

J. Chem. Phys. (2)

T. E. Orlowski, A. H. Zewail, J. Chem. Phys. 70, 1390 (1979).
[CrossRef]

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5956 (1981); J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

J. Lumin. (1)

M. A. Banash, J. Gutow, W. S. Warren, J. Lumin. 31–32, 855 (1984).
[CrossRef]

J. Magn. Reson. (1)

R. Freeman, S. P. Kempsell, M. H. Levitt, J. Magn. Reson. 38, 453 (1980); M. H. Levitt, R. Freeman, J. Magn. Reson. 43, 502 (1981); M. H. Levitt, R. Freeman, T. Frenkel, J. Magn. Reson. 47, 328 (1982).

Opt. Lett. (1)

Phys. Rev. (1)

A. G. Redfield, Phys. Rev. 98, 1787 (1955).
[CrossRef]

Phys. Rev. Lett. (3)

R. G. DeVoe, R. G. Brewer, Phys. Rev. Lett. 50, 1269 (1983); A. Schenzle, M. Mitsunaga, R. G. DeVoe, R. G. Brewer, Phys. Rev. A 30, 325 (1984).
[CrossRef]

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1979).
[CrossRef]

A. G. Yodh, J. Golub, N. W. Carlson, T. W. Mossberg, Phys. Rev. Lett. 53, 659 (1984).
[CrossRef]

Other (2)

At present, accurate error estimates are difficult to obtain because of single-mode instability, particularly at long times. However, the reproducibility of all pressure-dependence data was verified.

E. T. Sleva, A. H. Zewail, J. Phys. Chem. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Computer simulation of locking decay signals using the optical Bloch equations. The dashed line represents the conventional polarization signal r2 (see text), the solid line the signal that is expected with our probe pulse technique, which converts the polarization to fluorescence (r3). Here τ1 = τ3 = 50 nsec, ωR1 (ρ = 0) = ωR3 (ρ = 0) = 0.03 nsec−1, and ωR2 (ρ = 0) = 0.06 nsec−1.

Fig. 2
Fig. 2

Locking, optical free-induction decay (OFID), and photon echo signals using the probe pulse method. The I2 pressure is 30 mTorr. The sequences used are XYX( X ¯) for locking, XXX( X ¯) for the echo, and XX( X ¯) for the OFID.

Fig. 3
Fig. 3

Locking signal decay τ2 is scanned continuously. At all times, the third pulse follows the y pulse immediately. The laser power during the preparation and locking pulses was 100 mW; during the probe pulse, 20 mW. The preparation pulse duration was 50 nsec; the probe 150 nsec.

Fig. 4
Fig. 4

For comparison: fluorescence, echo, and locking decays at 30 mTorr. Note that T2T1ρ.

Fig. 5
Fig. 5

T1, T2, and T1ρ for I2 at 589.7 nm as a function of pressure. T1ρT2. The circles are the measured locking decays (T1ρ), and the solid lines are the measured T2 and T1 decays (with their error bars) obtained here and in previous work (see Ref. 10).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r ˙ = Ar + g ,
A = ( - 1 / T 1 ρ Δ - ω R y - Δ - 1 / T 1 ρ ω R x ω R y - ω R x - 1 / T 1 )
g = ( 0 0 - 1 / T 1 ) .
R ˙ = DR + h ,
r ( t 1 ) = ( ( ω R 1 Δ / Ω 1 2 ) [ 1 - cos ( Ω 1 t 1 ) ] ( ω R 1 / Ω 1 ) sin ( Ω 1 t 1 ) - [ Δ 2 + ω R 1 2 cos ( Ω 1 t 1 ) ] / Ω 1 2 ) ,
I = Δ , ρ ρ [ r 3 ( t 3 , Δ , ρ , ϕ = X ) - r 3 ( t 3 , Δ , ρ , ϕ = X ¯ ) ] d Δ d ρ ,

Metrics