Abstract

An experimental method based on subpicosecond pulse amplification in excimer gain modules for simultaneously generating both ultrafast, energetic UV excitation pulses and ultrafast UV probe continua is described. Subpicosecond pulses at both 308 and 248 nm, with energies of several millijoules at each wavelength, are available from this apparatus for purposes of excitation. A simultaneously generated probe continuum spans the range ~450 to ~235 nm. Both the probe continuum and the seed pulses for amplification at 248 nm are produced by focusing 308-nm pulses into high-pressure gases (Ar and H2, respectively). A deduced multiple-pulse structure in the probe continuum limits the time resolution of the apparatus to ~1 psec.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84, 1932 (1986).
    [Crossref]
  2. J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 83, 1996 (1985).
    [Crossref]
  3. J. H. Glownia, G. Arjavalingam, P. P. Sorokin, and J. E. Rothenberg, Opt. Lett. 11, 79 (1986).
    [Crossref]
  4. P. B. Corkum, National Research Council of Canada, Ottawa, Ontario K1A 0R6 Canada (personal communication, October1985); P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, in Digest of Topical Meeting on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1986), p. 210.
  5. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592 (1970).
    [Crossref]
  6. R. L. Fork, C. V. Shank, R. T. Yen, and C. Hirlimann, in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Laubereau, eds. (Springer-Verlag, New York, 1982).
  7. J. P. McTague, C. H. Lin, T. K. Gustafson, and R. Y. Chiao, Phys. Lett. 32A, 82 (1970).
  8. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 1217 (1970).
    [Crossref]
  9. This explanation evolved from a discussion with K. A. Nelson.
  10. P. B. Corkum and R. S. Taylor, IEEE J. Quantum Electron. QE-18, 1962 (1982).
    [Crossref]
  11. See, for example, J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).
  12. F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).
    [Crossref]

1986 (2)

J. H. Glownia, G. Arjavalingam, P. P. Sorokin, and J. E. Rothenberg, Opt. Lett. 11, 79 (1986).
[Crossref]

N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84, 1932 (1986).
[Crossref]

1985 (1)

J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 83, 1996 (1985).
[Crossref]

1982 (1)

P. B. Corkum and R. S. Taylor, IEEE J. Quantum Electron. QE-18, 1962 (1982).
[Crossref]

1970 (3)

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592 (1970).
[Crossref]

J. P. McTague, C. H. Lin, T. K. Gustafson, and R. Y. Chiao, Phys. Lett. 32A, 82 (1970).

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 1217 (1970).
[Crossref]

1969 (1)

F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).
[Crossref]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592 (1970).
[Crossref]

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 1217 (1970).
[Crossref]

Arjavalingam, G.

Chiao, R. Y.

J. P. McTague, C. H. Lin, T. K. Gustafson, and R. Y. Chiao, Phys. Lett. 32A, 82 (1970).

Corkum, P. B.

P. B. Corkum and R. S. Taylor, IEEE J. Quantum Electron. QE-18, 1962 (1982).
[Crossref]

P. B. Corkum, National Research Council of Canada, Ottawa, Ontario K1A 0R6 Canada (personal communication, October1985); P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, in Digest of Topical Meeting on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1986), p. 210.

Doany, F. E.

N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84, 1932 (1986).
[Crossref]

Fork, R. L.

R. L. Fork, C. V. Shank, R. T. Yen, and C. Hirlimann, in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Laubereau, eds. (Springer-Verlag, New York, 1982).

Glownia, J. H.

Gustafson, T. K.

J. P. McTague, C. H. Lin, T. K. Gustafson, and R. Y. Chiao, Phys. Lett. 32A, 82 (1970).

Hirlimann, C.

R. L. Fork, C. V. Shank, R. T. Yen, and C. Hirlimann, in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Laubereau, eds. (Springer-Verlag, New York, 1982).

Hopf, F. A.

F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).
[Crossref]

Khundkar, L. R.

J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 83, 1996 (1985).
[Crossref]

Knee, J. L.

J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 83, 1996 (1985).
[Crossref]

Lin, C. H.

J. P. McTague, C. H. Lin, T. K. Gustafson, and R. Y. Chiao, Phys. Lett. 32A, 82 (1970).

McTague, J. P.

J. P. McTague, C. H. Lin, T. K. Gustafson, and R. Y. Chiao, Phys. Lett. 32A, 82 (1970).

Perry, J. W.

N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84, 1932 (1986).
[Crossref]

Reintjes, J. F.

See, for example, J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).

Rothenberg, J. E.

Scherer, N. F.

N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84, 1932 (1986).
[Crossref]

Scully, M. O.

F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).
[Crossref]

Shank, C. V.

R. L. Fork, C. V. Shank, R. T. Yen, and C. Hirlimann, in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Laubereau, eds. (Springer-Verlag, New York, 1982).

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592 (1970).
[Crossref]

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 1217 (1970).
[Crossref]

Sorokin, P. P.

Taylor, R. S.

P. B. Corkum and R. S. Taylor, IEEE J. Quantum Electron. QE-18, 1962 (1982).
[Crossref]

Yen, R. T.

R. L. Fork, C. V. Shank, R. T. Yen, and C. Hirlimann, in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Laubereau, eds. (Springer-Verlag, New York, 1982).

Zewail, A. H.

N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84, 1932 (1986).
[Crossref]

J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 83, 1996 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

P. B. Corkum and R. S. Taylor, IEEE J. Quantum Electron. QE-18, 1962 (1982).
[Crossref]

J. Chem. Phys. (2)

N. F. Scherer, F. E. Doany, A. H. Zewail, and J. W. Perry, J. Chem. Phys. 84, 1932 (1986).
[Crossref]

J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 83, 1996 (1985).
[Crossref]

Opt. Lett. (1)

Phys. Lett. (1)

J. P. McTague, C. H. Lin, T. K. Gustafson, and R. Y. Chiao, Phys. Lett. 32A, 82 (1970).

Phys. Rev. (1)

F. A. Hopf and M. O. Scully, Phys. Rev. 179, 399 (1969).
[Crossref]

Phys. Rev. Lett. (2)

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 1217 (1970).
[Crossref]

R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592 (1970).
[Crossref]

Other (4)

R. L. Fork, C. V. Shank, R. T. Yen, and C. Hirlimann, in Picosecond Phenomena III, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Laubereau, eds. (Springer-Verlag, New York, 1982).

This explanation evolved from a discussion with K. A. Nelson.

P. B. Corkum, National Research Council of Canada, Ottawa, Ontario K1A 0R6 Canada (personal communication, October1985); P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, in Digest of Topical Meeting on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1986), p. 210.

See, for example, J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a)–(c) Single-shot spectra of the continuum beam from a cell containing Ar gas at ~33 atm. A 10-nm wide spectral window is shown.

Fig. 2
Fig. 2

Initial falloff of the Ar continuum beam intensity on the anti-Stokes side of the pump frequency ν0 (ν0 = 32 457 cm−1).

Fig. 3
Fig. 3

Multishot average (128 shots) of continuum beam from a cell containing CO2 gas at ~40 atm. A 10-nm wide spectral window in the region of the first Stokes lines is shown.

Fig. 4
Fig. 4

Multishot averages (128 shots each) of continuum plus Raman beams from cells containing H2 gas. (a), 40-cm cell, PH2∼33 atm, high-dispersionspectrograph grating, first Stokes region. (b), 40-cm cell, PH2∼33 atm, low-dispersion grating, pump frequency region. Some ASEis present, as shown by lower trace, made with seed blocked. (c), 65-cm cell, PH2∼37 atm, high-dispersion, first anti-Stokes region. (d), 65-cmcell, PH2∼18 atm, high-dispersion, second anti-Stokes region.

Fig. 5
Fig. 5

Multishot average (128 shots) of the spectrum of the amplified 248-nm subpicosecond pulse.

Fig. 6
Fig. 6

Autocorrelation trace of the 248-nm amplified beam. From the autocorrelation width shown, an actual pulse width ~450 fsec is deduced, based on the assumption of a sech2 pulse shape.

Fig. 7
Fig. 7

Scheme employed for multiplexing the 308-nm pulses (u, ultraviolet; r, red).

Fig. 8
Fig. 8

Single-shot spectra obtained by gentle focusing of 308-nm ultrashort pulses in the air atmosphere. (See text and Ref. 3.)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = 0.093 t p | ω max | ,
S 2 ( ω ) = c 8 π | exp ( i ω t ) A 0 ( t ) exp { i [ ω 0 t + ϕ ( t ) ] } d t + exp ( i ω t ) A 0 ( t τ ) exp { i [ ω 0 ( t τ ) + ϕ ( t τ ) ] d t | 2 ,

Metrics