Abstract

An experimental study of a high-power forward Raman amplifier pumped by a multibeam KrF laser is presented. The active medium is either CH4 at 3-bar pressure or H2 at 1-bar pressure. As many as 56 pump beams confined in a light guide were combined into a single low-divergence Stokes beam. In CH4 a gain of up to 300 and a power-conversion efficiency of 70% was obtained. The maximum Stokes output energy was 8.4 J. The dependence of gain on pump bandwidth was investigated in H2. A gain of 500 and a conversion efficiency of 65% were obtained. The maximum output energy was 5.0 J.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Edwards, F. O’Neill, M. J. Shaw, D. Baker, D. Craddock, “Sprite—a high power e-beam pumped KrF laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 59–65.
  2. Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
    [CrossRef]
  3. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
    [CrossRef]
  4. J. P. Partanen, M. J. Shaw, “High power forward Raman amplifiers employing low pressure gases in light guides. I. Theory and applications,” J. Opt. Soc. Am. B 3, 1374–1389 (1986).
    [CrossRef]
  5. A. Owyoung, “High-resolution cw stimulated Raman spectroscopy in molecular hydrogen,” Opt. Lett. 2, 91–93 (1978).
    [CrossRef] [PubMed]
  6. Y. Taira, K. Ide, H. Takuma “Accurate measurement of the pressure broadening of the Raman line of CH4in 1 to 50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
    [CrossRef]
  7. N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
    [CrossRef]
  8. N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
    [CrossRef]
  9. N. G. Basov, A. Z. Grasyuk, I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” presented at the International Conference on Lasers ’80 (New Orleans, Louisiana, 1980).
  10. E. A. Stappaerts, W. H. Long, H. Komine, “Gain enhancement in Raman amplifiers with broad band pumping,” Opt. Lett. 5, 4–6 (1980).
    [CrossRef]
  11. J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman Amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
    [CrossRef]
  12. J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).
  13. R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean-up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
    [CrossRef]
  14. W. Muckenheim, K. Hola, E. Albens, H. v. Bergmann, D. Basting, “Excimer lasers with high spectral brightness working in the regenerative amplifier regime,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 80–98.
  15. C. B. Edwards, F. O’Neill, M. J. Shaw “KrF laser triggering of a multiline pulsed power system,” J. Phys. E 18, 136–141 (1985).
    [CrossRef]
  16. I. V. Tomov, R. Fedosejevs, D. C. D. McKen, C. Domier, A. A. Offenberger, “Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering,” Opt. Lett. 8, 9–11 (1983).
    [CrossRef] [PubMed]
  17. M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).
  18. M. W. Tayor, J. Goldhar, J. R. Murray, “Dylux, an instant-image photographic material suitable for ultraviolet laser beam intensity diagnostics,” Appl. Opt. 21, 4–5 (1982).
    [CrossRef]
  19. W.K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983, pp. 181–187.

1986 (1)

1985 (3)

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean-up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[CrossRef]

C. B. Edwards, F. O’Neill, M. J. Shaw “KrF laser triggering of a multiline pulsed power system,” J. Phys. E 18, 136–141 (1985).
[CrossRef]

1984 (1)

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

1983 (1)

1982 (4)

M. W. Tayor, J. Goldhar, J. R. Murray, “Dylux, an instant-image photographic material suitable for ultraviolet laser beam intensity diagnostics,” Appl. Opt. 21, 4–5 (1982).
[CrossRef]

M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman Amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[CrossRef]

Y. Taira, K. Ide, H. Takuma “Accurate measurement of the pressure broadening of the Raman line of CH4in 1 to 50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

1980 (1)

1979 (2)

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[CrossRef]

N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[CrossRef]

1978 (1)

1967 (1)

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
[CrossRef]

Albens, E.

W. Muckenheim, K. Hola, E. Albens, H. v. Bergmann, D. Basting, “Excimer lasers with high spectral brightness working in the regenerative amplifier regime,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 80–98.

Baker, D.

C. B. Edwards, F. O’Neill, M. J. Shaw, D. Baker, D. Craddock, “Sprite—a high power e-beam pumped KrF laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 59–65.

Basov, N. G.

N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[CrossRef]

N. G. Basov, A. Z. Grasyuk, I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” presented at the International Conference on Lasers ’80 (New Orleans, Louisiana, 1980).

Basting, D.

W. Muckenheim, K. Hola, E. Albens, H. v. Bergmann, D. Basting, “Excimer lasers with high spectral brightness working in the regenerative amplifier regime,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 80–98.

Bergmann, H. v.

W. Muckenheim, K. Hola, E. Albens, H. v. Bergmann, D. Basting, “Excimer lasers with high spectral brightness working in the regenerative amplifier regime,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 80–98.

Bishel, W.K.

W.K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983, pp. 181–187.

Black, G.

W.K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983, pp. 181–187.

Bloembergen, N.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
[CrossRef]

Bret, G.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
[CrossRef]

Chang, R. S. F.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean-up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[CrossRef]

Craddock, D.

M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).

C. B. Edwards, F. O’Neill, M. J. Shaw, D. Baker, D. Craddock, “Sprite—a high power e-beam pumped KrF laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 59–65.

Djeu, N.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean-up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[CrossRef]

Domier, C.

Duignan, M. T.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean-up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[CrossRef]

Eason, R.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

Edwards, C. B.

C. B. Edwards, F. O’Neill, M. J. Shaw “KrF laser triggering of a multiline pulsed power system,” J. Phys. E 18, 136–141 (1985).
[CrossRef]

M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).

C. B. Edwards, F. O’Neill, M. J. Shaw, D. Baker, D. Craddock, “Sprite—a high power e-beam pumped KrF laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 59–65.

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[CrossRef]

Fedosejevs, R.

Goldhar, J.

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman Amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[CrossRef]

M. W. Tayor, J. Goldhar, J. R. Murray, “Dylux, an instant-image photographic material suitable for ultraviolet laser beam intensity diagnostics,” Appl. Opt. 21, 4–5 (1982).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[CrossRef]

Grasyuk, A. Z.

N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[CrossRef]

N. G. Basov, A. Z. Grasyuk, I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” presented at the International Conference on Lasers ’80 (New Orleans, Louisiana, 1980).

Hodgson, E. M.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

Hola, K.

W. Muckenheim, K. Hola, E. Albens, H. v. Bergmann, D. Basting, “Excimer lasers with high spectral brightness working in the regenerative amplifier regime,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 80–98.

Ide, K.

Y. Taira, K. Ide, H. Takuma “Accurate measurement of the pressure broadening of the Raman line of CH4in 1 to 50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

Karev, I. Ya.

N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[CrossRef]

Key, M. H.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

Komine, H.

Lallemand, P.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
[CrossRef]

Lehmberg, R. H.

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean-up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[CrossRef]

Long, W. H.

Losey, L. L.

N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[CrossRef]

Matsumoto, Y.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

McKen, D. C. D.

Muckenheim, W.

W. Muckenheim, K. Hola, E. Albens, H. v. Bergmann, D. Basting, “Excimer lasers with high spectral brightness working in the regenerative amplifier regime,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 80–98.

Murray, J. R.

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

M. W. Tayor, J. Goldhar, J. R. Murray, “Dylux, an instant-image photographic material suitable for ultraviolet laser beam intensity diagnostics,” Appl. Opt. 21, 4–5 (1982).
[CrossRef]

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman Amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[CrossRef]

Nicholas, D. J.

M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).

O’Neill, F.

C. B. Edwards, F. O’Neill, M. J. Shaw “KrF laser triggering of a multiline pulsed power system,” J. Phys. E 18, 136–141 (1985).
[CrossRef]

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).

C. B. Edwards, F. O’Neill, M. J. Shaw, D. Baker, D. Craddock, “Sprite—a high power e-beam pumped KrF laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 59–65.

Offenberger, A. A.

Owyoung, A.

Partanen, J.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

Partanen, J. P.

Pine, A.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
[CrossRef]

Ross, I. N.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

Sakagami, Y.

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

Shaw, M. J.

J. P. Partanen, M. J. Shaw, “High power forward Raman amplifiers employing low pressure gases in light guides. I. Theory and applications,” J. Opt. Soc. Am. B 3, 1374–1389 (1986).
[CrossRef]

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

C. B. Edwards, F. O’Neill, M. J. Shaw “KrF laser triggering of a multiline pulsed power system,” J. Phys. E 18, 136–141 (1985).
[CrossRef]

M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).

C. B. Edwards, F. O’Neill, M. J. Shaw, D. Baker, D. Craddock, “Sprite—a high power e-beam pumped KrF laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 59–65.

Simova, P.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
[CrossRef]

Smirnov, V. G.

N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[CrossRef]

Stappaerts, E. A.

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[CrossRef]

Taira, Y.

Y. Taira, K. Ide, H. Takuma “Accurate measurement of the pressure broadening of the Raman line of CH4in 1 to 50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

Takuma, H.

Y. Taira, K. Ide, H. Takuma “Accurate measurement of the pressure broadening of the Raman line of CH4in 1 to 50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

Taylor, M. W.

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

Tayor, M. W.

Tomov, I. V.

Zubarev, I. G.

N. G. Basov, A. Z. Grasyuk, I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” presented at the International Conference on Lasers ’80 (New Orleans, Louisiana, 1980).

Appl. Opt. (1)

Appl. Phys. B (1)

M. J. Shaw, F. O’Neill, C. B. Edwards, D. J. Nicholas, D. Craddock, “Sprite—a 250 J KrF laser,” Appl. Phys. B 28, 127 (1982).

Appl. Phys. Lett. (1)

Y. Matsumoto, M. J. Shaw, F. O’Neill, J. Partanen, M. H. Key, R. Eason, I. N. Ross, E. M. Hodgson, Y. Sakagami, “X-ray emission from KrF laser-produced Al plasmas,” Appl. Phys. Lett. 46, 28–30 (1985).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Taira, K. Ide, H. Takuma “Accurate measurement of the pressure broadening of the Raman line of CH4in 1 to 50 atm region by inverse Raman spectroscopy,” Chem. Phys. Lett. 91, 299–301 (1982).
[CrossRef]

IEEE J. Quantum Electron. (5)

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simova, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. QE-3, 197–201 (1967).
[CrossRef]

J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman Amplifiers,” IEEE J. Quantum Electron. QE-18, 399–409 (1982).
[CrossRef]

J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum Electron. QE-20, 722–785 (1984).

R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, N. Djeu, “Raman beam clean-up of a severely aberrated pump laser,” IEEE J. Quantum Electron. QE-21, 477–487 (1985).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–363 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. E (1)

C. B. Edwards, F. O’Neill, M. J. Shaw “KrF laser triggering of a multiline pulsed power system,” J. Phys. E 18, 136–141 (1985).
[CrossRef]

Opt. Lett. (3)

Sov. J. Quantum Electron. (1)

N. G. Basov, A. Z. Grasyuk, I. Ya. Karev, L. L. Losey, V. G. Smirnov, “Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses,” Sov. J. Quantum Electron. 9, 780–781 (1979).
[CrossRef]

Other (4)

N. G. Basov, A. Z. Grasyuk, I. G. Zubarev, “Prospects of high power lasers using stimulated Raman scattering,” presented at the International Conference on Lasers ’80 (New Orleans, Louisiana, 1980).

W. Muckenheim, K. Hola, E. Albens, H. v. Bergmann, D. Basting, “Excimer lasers with high spectral brightness working in the regenerative amplifier regime,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 80–98.

C. B. Edwards, F. O’Neill, M. J. Shaw, D. Baker, D. Craddock, “Sprite—a high power e-beam pumped KrF laser,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 59–65.

W.K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200 to 600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983, pp. 181–187.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The Sprite KrF laser.

Fig. 2
Fig. 2

Experimental arrangement for investigating the light-guided forward Raman amplifier. The Stokes generator is used in the backward direction for CH4 and in the forward direction for H2 (dashed line).

Fig. 3
Fig. 3

Efficiency of backward generation in CH4 as a function of pressure. Pump energy was 100 mJ in 25 nsec with a linewidth of 0.07 cm−1. A 2-m focal-length lens was used.

Fig. 4
Fig. 4

High-resolution spectrum from the H2 forward Raman generator at 1-bar pressure. Pump energy was 100 mJ in 25 nsec at 248 nm, and a 1-m focal-length lens was used. Raman frequencies are S(0) = 354.4 cm−1, S(1) = 587.1 cm−1, and Q(1) = 4155.2 cm−1. Relative amplitudes among pump, Q(1), and 2Q(1) groups are not to scale.

Fig. 5
Fig. 5

Spectra from the OMA showing Sprite locking efficiency. The fraction of energy in the narrow line was (a) = 11%. (b) = 21% (c) = 78%.

Fig. 6
Fig. 6

One quadrant of the segmented mirror showing the angles subtended at the light-guide entrance by the pump beamlets and the transmission of each beamlet.

Fig. 7
Fig. 7

Diagnostics used in the experiment: J1–J3, Joulemeters; D1–D4, photodiodes; FP, Fabry–Perot interferometer; OMA, optical multichannel analyzer.

Fig. 8
Fig. 8

Photodiode traces for the CH4 amplifier: (a) the input pump pulse (top trace) and depleted pump pulse (second pulse on bottom trace) at 20 nsec/division, (b) the input Stokes pulse, and (c) the amplified Stokes pulse at 2 nsec/division. In this shot incident pump energy was 52 J in 55 nsec. The total transmitted energy (corrected for quantum loss) was 36 J. The input Stokes energy was 10 mJ, and the output Stokes energy was 3.7 J. 73% of the pump energy was in a narrow line.

Fig. 9
Fig. 9

Power-conversion efficiency in CH4 at 3-bars pressure as a function of pump intensity/length product. Solid curve is prediction of Eq. (2) with γ = 7 × 10−10 cm W−1 and Is(0) = 300 kW cm−2.

Fig. 10
Fig. 10

Photodiode traces for the H2 amplifier: (a) input pump (top trace) and depleted pump (second pulse on bottom trace) at 20 nsec/division, (b) the Stokes input, and (c) the Stokes output at 5 nsec/division. In this shot the total incident pump energy was 20 J. The total transmitted energy (corrected for quantum loss) was 17 J. The Stokes input energy was 7.5 mJ, and the Stokes output energy 4.3 J. 75% of the pump energy was in a narrow line.

Fig. 11
Fig. 11

Power-conversion efficiency in H2 at 1-bar pressure as a function of intensity/length product. Solid curve is prediction of Eq. (3) with γ = 1.55 × 10−9 cm W−1Is(0) = 60 kW cm−2, and N = 20.

Fig. 12
Fig. 12

Small-signal gain measurements in H2 at 1-bar pressure as a function of IpL. Solid points, laser linewidth = 0.07 cm−1. Open points, laser linewidth = 0.7 cm−1. Solid lines are from Eq. (5) with N = 1, 20, 200, reading from left to right.

Fig. 13
Fig. 13

Reflectivity of multilayer dielectric coatings designed for use in a light guide as a function of angle of incidence. Measured at 248 nm in s polarization.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η = E s / τ s F W p ,
η = I s ( 0 ) I p ( 0 ) exp [ γ I p ( 0 ) L ] 1 + ω p ω s I s ( 0 ) I p ( 0 ) exp [ γ I p ( 0 ) L ] .
η = I s ( 0 ) I p ( 0 ) N exp [ γ I p ( 0 ) L ] 1 + ω p ω s 1 N I s ( 0 ) I p ( 0 ) exp [ γ I p ( 0 ) L ] ,
G = 1 + 1 N [ exp ( γ I p ( 0 ) L ] 1.
G = 1 / N exp [ γ I p ( 0 ) L ] .
I c = π Δ ν ¯ p γ θ 2 ,

Metrics